Create model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
from torch.utils.data import Dataset, DataLoader
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
from transformers import AutoTokenizer
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
import math
|
| 9 |
+
import speech_recognition as sr
|
| 10 |
+
import pyttsx3
|
| 11 |
+
from googlesearch import search
|
| 12 |
+
import warnings
|
| 13 |
+
from typing import List, Dict, Union
|
| 14 |
+
|
| 15 |
+
# Ignore warnings
|
| 16 |
+
warnings.filterwarnings("ignore")
|
| 17 |
+
|
| 18 |
+
class WebSearchWrapper:
|
| 19 |
+
"""Wrapper for web search with caching"""
|
| 20 |
+
def __init__(self, cache_size: int = 100):
|
| 21 |
+
self.cache: Dict[str, List[str]] = {}
|
| 22 |
+
self.cache_size = cache_size
|
| 23 |
+
|
| 24 |
+
def search(self, query: str, num_results: int = 3) -> List[str]:
|
| 25 |
+
"""Perform web search with caching"""
|
| 26 |
+
if query.lower() in self.cache:
|
| 27 |
+
return self.cache[query.lower()]
|
| 28 |
+
|
| 29 |
+
try:
|
| 30 |
+
search_results = list(search(query, num_results=num_results, stop=num_results, pause=2))
|
| 31 |
+
self._add_to_cache(query, search_results)
|
| 32 |
+
return search_results
|
| 33 |
+
except Exception as e:
|
| 34 |
+
print(f"Web search error: {e}")
|
| 35 |
+
return []
|
| 36 |
+
|
| 37 |
+
def _add_to_cache(self, query: str, results: List[str]):
|
| 38 |
+
"""Add results to cache with LRU eviction policy"""
|
| 39 |
+
if len(self.cache) >= self.cache_size:
|
| 40 |
+
self.cache.pop(next(iter(self.cache)))
|
| 41 |
+
self.cache[query.lower()] = results
|
| 42 |
+
|
| 43 |
+
class FullChatDataset(Dataset):
|
| 44 |
+
def __init__(self, dataset_names=["blended_skill_talk", "conv_ai_2", "social_i_qa"], max_length=256):
|
| 45 |
+
self.datasets = []
|
| 46 |
+
|
| 47 |
+
for name in dataset_names:
|
| 48 |
+
try:
|
| 49 |
+
dataset = load_dataset(name, split="train")
|
| 50 |
+
self.datasets.append(dataset)
|
| 51 |
+
except Exception as e:
|
| 52 |
+
print(f"Failed to load dataset {name}: {e}")
|
| 53 |
+
|
| 54 |
+
self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 55 |
+
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
| 56 |
+
self.max_length = max_length
|
| 57 |
+
|
| 58 |
+
def __len__(self):
|
| 59 |
+
return sum(len(d) for d in self.datasets)
|
| 60 |
+
|
| 61 |
+
def __getitem__(self, idx):
|
| 62 |
+
for dataset in self.datasets:
|
| 63 |
+
if idx < len(dataset):
|
| 64 |
+
item = dataset[idx]
|
| 65 |
+
break
|
| 66 |
+
idx -= len(dataset)
|
| 67 |
+
|
| 68 |
+
if 'dialog' in item:
|
| 69 |
+
dialog = item['dialog']
|
| 70 |
+
elif 'messages' in item:
|
| 71 |
+
dialog = [msg['text'] for msg in item['messages']]
|
| 72 |
+
else:
|
| 73 |
+
dialog = [v for k, v in item.items() if isinstance(v, str)]
|
| 74 |
+
|
| 75 |
+
context = " [SEP] ".join(dialog[:-1])
|
| 76 |
+
response = dialog[-1]
|
| 77 |
+
|
| 78 |
+
inputs = self.tokenizer(
|
| 79 |
+
context,
|
| 80 |
+
text_pair=response,
|
| 81 |
+
max_length=self.max_length,
|
| 82 |
+
padding='max_length',
|
| 83 |
+
truncation=True,
|
| 84 |
+
return_tensors="pt"
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
return {
|
| 88 |
+
'input_ids': inputs['input_ids'].flatten(),
|
| 89 |
+
'attention_mask': inputs['attention_mask'].flatten(),
|
| 90 |
+
'labels': inputs['input_ids'].flatten()
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
class SimpleTransformerModel(nn.Module):
|
| 94 |
+
def __init__(self, vocab_size, d_model=256, nhead=4, num_layers=3):
|
| 95 |
+
super().__init__()
|
| 96 |
+
self.embedding = nn.Embedding(vocab_size, d_model)
|
| 97 |
+
self.pos_encoder = PositionalEncoding(d_model)
|
| 98 |
+
encoder_layer = nn.TransformerEncoderLayer(d_model, nhead)
|
| 99 |
+
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers)
|
| 100 |
+
self.fc = nn.Linear(d_model, vocab_size)
|
| 101 |
+
|
| 102 |
+
def forward(self, x, mask=None):
|
| 103 |
+
x = self.embedding(x)
|
| 104 |
+
x = self.pos_encoder(x)
|
| 105 |
+
x = self.transformer(x, mask)
|
| 106 |
+
return self.fc(x)
|
| 107 |
+
|
| 108 |
+
class PositionalEncoding(nn.Module):
|
| 109 |
+
def __init__(self, d_model, max_len=500):
|
| 110 |
+
super().__init__()
|
| 111 |
+
position = torch.arange(max_len).unsqueeze(1)
|
| 112 |
+
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
| 113 |
+
pe = torch.zeros(max_len, d_model)
|
| 114 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
| 115 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
| 116 |
+
self.register_buffer('pe', pe)
|
| 117 |
+
|
| 118 |
+
def forward(self, x):
|
| 119 |
+
return x + self.pe[:x.size(1)]
|
| 120 |
+
|
| 121 |
+
class VoiceInterface:
|
| 122 |
+
def __init__(self):
|
| 123 |
+
self.recognizer = sr.Recognizer()
|
| 124 |
+
self.engine = pyttsx3.init()
|
| 125 |
+
|
| 126 |
+
def listen(self) -> Union[str, None]:
|
| 127 |
+
with sr.Microphone() as source:
|
| 128 |
+
print("Listening...")
|
| 129 |
+
audio = self.recognizer.listen(source)
|
| 130 |
+
try:
|
| 131 |
+
text = self.recognizer.recognize_google(audio)
|
| 132 |
+
print(f"You said: {text}")
|
| 133 |
+
return text
|
| 134 |
+
except Exception as e:
|
| 135 |
+
print(f"Error recognizing speech: {e}")
|
| 136 |
+
return None
|
| 137 |
+
|
| 138 |
+
def speak(self, text: str):
|
| 139 |
+
print(f"Bot: {text}")
|
| 140 |
+
self.engine.say(text)
|
| 141 |
+
self.engine.runAndWait()
|
| 142 |
+
|
| 143 |
+
class ChatBot:
|
| 144 |
+
def __init__(self):
|
| 145 |
+
self.dataset = FullChatDataset()
|
| 146 |
+
self.model = SimpleTransformerModel(len(self.dataset.tokenizer))
|
| 147 |
+
self.voice_interface = VoiceInterface()
|
| 148 |
+
self.web_searcher = WebSearchWrapper()
|
| 149 |
+
|
| 150 |
+
def train(self, epochs=3, lr=3e-4):
|
| 151 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 152 |
+
self.model = self.model.to(device)
|
| 153 |
+
criterion = nn.CrossEntropyLoss(ignore_index=0)
|
| 154 |
+
optimizer = optim.Adam(self.model.parameters(), lr=lr)
|
| 155 |
+
|
| 156 |
+
dataloader = DataLoader(self.dataset, batch_size=8, shuffle=True)
|
| 157 |
+
|
| 158 |
+
for epoch in range(epochs):
|
| 159 |
+
self.model.train()
|
| 160 |
+
total_loss = 0
|
| 161 |
+
pbar = tqdm(dataloader, desc=f"Epoch {epoch+1}/{epochs}")
|
| 162 |
+
|
| 163 |
+
for batch in pbar:
|
| 164 |
+
inputs = batch['input_ids'].to(device)
|
| 165 |
+
masks = batch['attention_mask'].to(device)
|
| 166 |
+
labels = batch['labels'].to(device)
|
| 167 |
+
|
| 168 |
+
optimizer.zero_grad()
|
| 169 |
+
outputs = self.model(inputs, masks)
|
| 170 |
+
loss = criterion(outputs.view(-1, outputs.size(-1)), labels.view(-1))
|
| 171 |
+
loss.backward()
|
| 172 |
+
optimizer.step()
|
| 173 |
+
|
| 174 |
+
total_loss += loss.item()
|
| 175 |
+
pbar.set_postfix({'loss': loss.item()})
|
| 176 |
+
|
| 177 |
+
print(f"Epoch {epoch+1} - Avg loss: {total_loss/len(dataloader):.4f}")
|
| 178 |
+
|
| 179 |
+
def generate_response(self, prompt: str, max_length: int = 100, use_web: bool = True) -> str:
|
| 180 |
+
device = next(self.model.parameters()).device
|
| 181 |
+
self.model.eval()
|
| 182 |
+
|
| 183 |
+
# Add web context if needed
|
| 184 |
+
if use_web and self._needs_web_search(prompt):
|
| 185 |
+
web_results = self.web_searcher.search(prompt)
|
| 186 |
+
if web_results:
|
| 187 |
+
prompt = f"Web context: {', '.join(web_results[:3])}. User question: {prompt}"
|
| 188 |
+
|
| 189 |
+
inputs = self.dataset.tokenizer(
|
| 190 |
+
prompt,
|
| 191 |
+
return_tensors="pt",
|
| 192 |
+
max_length=256,
|
| 193 |
+
truncation=True,
|
| 194 |
+
padding='max_length'
|
| 195 |
+
).to(device)
|
| 196 |
+
|
| 197 |
+
with torch.no_grad():
|
| 198 |
+
outputs = self.model.generate(
|
| 199 |
+
input_ids=inputs['input_ids'],
|
| 200 |
+
attention_mask=inputs['attention_mask'],
|
| 201 |
+
max_length=max_length,
|
| 202 |
+
do_sample=True,
|
| 203 |
+
top_k=50,
|
| 204 |
+
top_p=0.95,
|
| 205 |
+
temperature=0.7
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
response = self.dataset.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 209 |
+
return response
|
| 210 |
+
|
| 211 |
+
def _needs_web_search(self, text: str) -> bool:
|
| 212 |
+
"""Determine if a query needs web search"""
|
| 213 |
+
question_words = ['what', 'when', 'where', 'who', 'why', 'how', 'which', '?']
|
| 214 |
+
return any(word in text.lower() for word in question_words)
|