Create train.py
Browse files
train.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils.data import DataLoader
|
3 |
+
from datasets import load_dataset
|
4 |
+
from model import ImageToVideoModel
|
5 |
+
from de_en.tokenizer import VideoTokenizer
|
6 |
+
import torch.optim as optim
|
7 |
+
from torch.nn import MSELoss
|
8 |
+
from tqdm import tqdm
|
9 |
+
import argparse
|
10 |
+
|
11 |
+
def prepare_datasets(dataset_name, batch_size, resolution):
|
12 |
+
dataset = load_dataset(dataset_name)
|
13 |
+
|
14 |
+
# Preprocess function
|
15 |
+
def preprocess(examples):
|
16 |
+
tokenizer = VideoTokenizer(resolution)
|
17 |
+
examples['image'] = [tokenizer.encode_image(img) for img in examples['image']]
|
18 |
+
examples['video'] = [tokenizer.encode_video(vid) for vid in examples['video']]
|
19 |
+
return examples
|
20 |
+
|
21 |
+
dataset = dataset.map(preprocess, batched=True)
|
22 |
+
dataset.set_format(type='torch', columns=['image', 'video'])
|
23 |
+
|
24 |
+
train_loader = DataLoader(dataset['train'], batch_size=batch_size, shuffle=True)
|
25 |
+
val_loader = DataLoader(dataset['validation'], batch_size=batch_size)
|
26 |
+
|
27 |
+
return train_loader, val_loader
|
28 |
+
|
29 |
+
def train_model(config):
|
30 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
+
|
32 |
+
# Initialize model
|
33 |
+
model = ImageToVideoModel(
|
34 |
+
encoder_config=config['encoder'],
|
35 |
+
decoder_config=config['decoder'],
|
36 |
+
transformer_config=config['transformer']
|
37 |
+
).to(device)
|
38 |
+
|
39 |
+
# Load datasets
|
40 |
+
train_loader, val_loader = prepare_datasets(
|
41 |
+
config['dataset_name'],
|
42 |
+
config['batch_size'],
|
43 |
+
config['resolution']
|
44 |
+
)
|
45 |
+
|
46 |
+
# Optimizer and loss
|
47 |
+
optimizer = optim.AdamW(model.parameters(), lr=config['lr'])
|
48 |
+
criterion = MSELoss()
|
49 |
+
|
50 |
+
# Training loop
|
51 |
+
for epoch in range(config['epochs']):
|
52 |
+
model.train()
|
53 |
+
train_loss = 0.0
|
54 |
+
|
55 |
+
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}"):
|
56 |
+
images = batch['image'].to(device)
|
57 |
+
videos = batch['video'].to(device)
|
58 |
+
|
59 |
+
# Random speed level for each sample in batch
|
60 |
+
speed_levels = torch.randint(0, 10, (images.size(0),).to(device)
|
61 |
+
|
62 |
+
optimizer.zero_grad()
|
63 |
+
|
64 |
+
# Predict all frames at once (teacher forcing)
|
65 |
+
outputs = model(images, videos[:, :-1], speed_levels)
|
66 |
+
|
67 |
+
loss = criterion(outputs, videos[:, 1:])
|
68 |
+
loss.backward()
|
69 |
+
optimizer.step()
|
70 |
+
|
71 |
+
train_loss += loss.item()
|
72 |
+
|
73 |
+
# Validation
|
74 |
+
model.eval()
|
75 |
+
val_loss = 0.0
|
76 |
+
with torch.no_grad():
|
77 |
+
for batch in val_loader:
|
78 |
+
images = batch['image'].to(device)
|
79 |
+
videos = batch['video'].to(device)
|
80 |
+
speed_levels = torch.randint(0, 10, (images.size(0),).to(device)
|
81 |
+
|
82 |
+
outputs = model(images, videos[:, :-1], speed_levels)
|
83 |
+
val_loss += criterion(outputs, videos[:, 1:]).item()
|
84 |
+
|
85 |
+
print(f"Epoch {epoch+1}, Train Loss: {train_loss/len(train_loader):.4f}, Val Loss: {val_loss/len(val_loader):.4f}")
|
86 |
+
|
87 |
+
# Save model
|
88 |
+
torch.save(model.state_dict(), config['save_path'])
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
parser = argparse.ArgumentParser()
|
92 |
+
parser.add_argument("--dataset", type=str, default="ucf101")
|
93 |
+
parser.add_argument("--batch_size", type=int, default=8)
|
94 |
+
parser.add_argument("--epochs", type=int, default=10)
|
95 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
96 |
+
parser.add_argument("--resolution", type=int, default=128)
|
97 |
+
parser.add_argument("--save_path", type=str, default="image_to_video_model.pth")
|
98 |
+
args = parser.parse_args()
|
99 |
+
|
100 |
+
config = {
|
101 |
+
'dataset_name': args.dataset,
|
102 |
+
'batch_size': args.batch_size,
|
103 |
+
'epochs': args.epochs,
|
104 |
+
'lr': args.lr,
|
105 |
+
'resolution': args.resolution,
|
106 |
+
'save_path': args.save_path,
|
107 |
+
'encoder': {
|
108 |
+
'in_channels': 3,
|
109 |
+
'hidden_dims': [64, 128, 256, 512],
|
110 |
+
'embed_dim': 512
|
111 |
+
},
|
112 |
+
'decoder': {
|
113 |
+
'embed_dim': 512,
|
114 |
+
'hidden_dims': [512, 256, 128, 64],
|
115 |
+
'out_channels': 3
|
116 |
+
},
|
117 |
+
'transformer': {
|
118 |
+
'd_model': 512,
|
119 |
+
'nhead': 8,
|
120 |
+
'num_encoder_layers': 3,
|
121 |
+
'num_decoder_layers': 3,
|
122 |
+
'dim_feedforward': 2048,
|
123 |
+
'dropout': 0.1
|
124 |
+
}
|
125 |
+
}
|
126 |
+
|
127 |
+
train_model(config)
|