import re import numpy as np import tensorflow_hub as hub import openai import os import tensorflow_text from sklearn.neighbors import NearestNeighbors import gradio as gr import requests import json import fitz #这里填写调用openai需要的密钥 openai.api_key = '9481961416fa4c8e883047c5679cf971' openai.api_base = 'https://demopro-oai-we2.openai.azure.com/' openai.api_type = 'azure' openai.api_version = '2022-12-01' #将嵌套的列表展平 def flatten(_2d_list): flat_list = [] for element in _2d_list: if type(element) is list: for item in element: flat_list.append(item) else: flat_list.append(element) return flat_list def preprocess(text): text = text.replace('\n', ' ') text = re.sub('\s+', ' ', text) return text #将pdf文档按段落分 # def pdf_to_text(path): # doc = pdfplumber.open(path) # pages = doc.pages # text_list=[] # for page,d in enumerate(pages): # d=d.extract_text() # d=preprocess(d) # text_list.append(d) # doc.close() # return text_list def pdf_to_text(path, start_page=1, end_page=None): doc = fitz.open(path) total_pages = doc.page_count if end_page is None: end_page = total_pages text_list = [] for i in range(start_page - 1, end_page): text = doc.load_page(i).get_text("text") text = preprocess(text) text_list.append(text) doc.close() return text_list def text_to_chunks(texts, word_length=150, start_page=1): text_toks = [t.split(' ') for t in texts] page_nums = [] chunks = [] for idx, words in enumerate(text_toks): for i in range(0, len(words), word_length): chunk = words[i : i + word_length] if ( (i + word_length) > len(words) and (len(chunk) < word_length) and (len(text_toks) != (idx + 1)) ): text_toks[idx + 1] = chunk + text_toks[idx + 1] continue chunk = ' '.join(chunk).strip() chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"' chunks.append(chunk) return chunks history=pdf_to_text('The Elements of Statisitcal Learning.pdf',start_page=20) history=text_to_chunks(history,start_page=1) def encoder(text): embed=openai.Embedding.create(input=text, engine="text-embedding-ada-002") return embed.get('data')[0].get('embedding') #定义语义搜索类 class SemanticSearch: def __init__(self): #类初始化,使用google公司的多语言语句编码,第一次运行时需要十几分钟的时间下载 self.use =hub.load('https://tfhub.dev/google/universal-sentence-encoder-multilingual/3') self.fitted = False def get_text_embedding(self, texts, batch=1000): embeddings = [] for i in range(0, len(texts), batch): text_batch = texts[i : (i + batch)] emb_batch = self.use(text_batch) embeddings.append(emb_batch) embeddings = np.vstack(embeddings) return embeddings #K近邻算法,找到与问题最相似的 k 个段落,这里的 k 即n_neighbors=10 def fit(self, data, batch=1000, n_neighbors=5): self.data = data self.embeddings = self.get_text_embedding(data, batch=batch) n_neighbors = min(n_neighbors, len(self.embeddings)) self.nn = NearestNeighbors(n_neighbors=n_neighbors) self.nn.fit(self.embeddings) self.fitted = True #定义了该方法后,实例就可以被当作函数调用,text参数即用户提出的问题,inp_emb为其转化成的向量 def __call__(self, text, return_data=True): inp_emb = self.use([text]) neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0] if return_data: return [self.data[i] for i in neighbors] else: return neighbors #openai的api接口,engine参数为我们选择的大语言模型,prompt即提示词 def generate_text(prompt, engine="text-davinci-003"): completions = openai.Completion.create( engine=engine, prompt=prompt, max_tokens=512, n=1, stop=None, temperature=0.7, ) message = completions.choices[0].text return message def generate_answer(question): #匹配与问题最相近的n个段落,前面定义了n=10 topn_chunks = recommender(question) prompt = "" prompt += 'search results:\n\n' #把匹配到的段落加进提示词 for c in topn_chunks: prompt += c + '\n\n' #提示词 prompt += ''' Instructions: 如果搜索结果中找不到相关信息,只需要回答'未在该文档中找到相关信息'。 如果找到了相关信息,请使用中文回答,回答尽量精确简洁。并在句子的末尾使用[七年级上册/七年级下册页码]符号引用每个参考文献(每个结果的开头都有这个编号) 如果不确定答案是否正确,就仅给出相似段落的来源,不要回复错误的答案。 \n\nQuery: {question}\nAnswer: ''' prompt += f"Query: {question}\nAnswer:" answer = generate_text(prompt,"text-davinci-003") return answer recommender = SemanticSearch() recommender.fit(history) #以下为web客户端搭建,运行后产生客户端界面 def ask_api(question): if question.strip() == '': return '[ERROR]: 未输入问题' return generate_answer(question) title = 'Chat With Statistical Learning' description = """ 该机器人将以Trevor Hastie等人所著的The Elements of Statistical Learning Data Mining, Inference, and Prediction (即我们上课所用的课本)为主题回答你的问题,如果所问问题与书的内容无关,将会返回"未在该文档中找到相关信息" """ with gr.Blocks() as demo: gr.Markdown(f'

{title}

') gr.Markdown(description) with gr.Row(): with gr.Group(): question = gr.Textbox(label='请输入你的问题') btn = gr.Button(value='提交') btn.style(full_width=True) with gr.Group(): answer = gr.Textbox(label='回答:') btn.click( ask_api, inputs=[question], outputs=[answer] ) #参数share=True会产生一个公开网页,别人可以通过访问该网页使用你的模型,前提是你需要正在运行这段代码(将自己的电脑当作服务器) demo.launch()