Update README.md
Browse files
README.md
CHANGED
|
@@ -75,6 +75,31 @@ Clinical Mosaic was pre-trained on deidentified clinical notes from MIMIC-IV-NOT
|
|
| 75 |
|
| 76 |
Install the Hugging Face Transformers library and load the model as follows:
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
```python
|
| 79 |
from transformers import AutoModelForSequenceClassification, BertTokenizer, BertConfig
|
| 80 |
|
|
|
|
| 75 |
|
| 76 |
Install the Hugging Face Transformers library and load the model as follows:
|
| 77 |
|
| 78 |
+
### For embeddings generation:
|
| 79 |
+
|
| 80 |
+
```python
|
| 81 |
+
from transformers import AutoModel, BertTokenizer, BertConfig
|
| 82 |
+
|
| 83 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # MosaicBERT uses the standard BERT tokenizer
|
| 84 |
+
config = BertConfig.from_pretrained('Sifal/ClinicalMosaic') # the config needs to be passed in
|
| 85 |
+
|
| 86 |
+
ClincalMosaic = AutoModel.from_pretrained(
|
| 87 |
+
'Sifal/ClinicalMosaic',
|
| 88 |
+
config=config,
|
| 89 |
+
torch_dtype='auto',
|
| 90 |
+
trust_remote_code=True,
|
| 91 |
+
device_map="auto"
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# Example usage
|
| 95 |
+
clinical_text = "..."
|
| 96 |
+
|
| 97 |
+
inputs = tokenizer(clinical_text, return_tensors="pt")
|
| 98 |
+
last_layer_embeddings = ClincalMosaic(**inputs, output_all_encoded_layers=False)
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
### For sequence classification:
|
| 102 |
+
|
| 103 |
```python
|
| 104 |
from transformers import AutoModelForSequenceClassification, BertTokenizer, BertConfig
|
| 105 |
|