Update README.md
Browse files
README.md
CHANGED
@@ -5,203 +5,154 @@ datasets:
|
|
5 |
- Shuu12121/java-codesearch-dataset-open
|
6 |
language:
|
7 |
- en
|
|
|
8 |
base_model:
|
9 |
- Shuu12121/CodeHawks-ModernBERT-1.0
|
10 |
pipeline_tag: sentence-similarity
|
11 |
tags:
|
12 |
- code
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
-
# Model Card for Model ID
|
15 |
|
16 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
17 |
|
18 |
-
|
19 |
|
20 |
-
##
|
21 |
|
22 |
-
###
|
|
|
23 |
|
24 |
-
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
## Uses
|
45 |
-
|
46 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
47 |
-
|
48 |
-
### Direct Use
|
49 |
-
|
50 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
51 |
-
|
52 |
-
[More Information Needed]
|
53 |
-
|
54 |
-
### Downstream Use [optional]
|
55 |
-
|
56 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
57 |
-
|
58 |
-
[More Information Needed]
|
59 |
-
|
60 |
-
### Out-of-Scope Use
|
61 |
-
|
62 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
63 |
-
|
64 |
-
[More Information Needed]
|
65 |
-
|
66 |
-
## Bias, Risks, and Limitations
|
67 |
-
|
68 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
69 |
-
|
70 |
-
[More Information Needed]
|
71 |
-
|
72 |
-
### Recommendations
|
73 |
-
|
74 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
75 |
-
|
76 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
77 |
-
|
78 |
-
## How to Get Started with the Model
|
79 |
-
|
80 |
-
Use the code below to get started with the model.
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
## Training Details
|
85 |
-
|
86 |
-
### Training Data
|
87 |
-
|
88 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
### Training Procedure
|
93 |
-
|
94 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
95 |
-
|
96 |
-
#### Preprocessing [optional]
|
97 |
-
|
98 |
-
[More Information Needed]
|
99 |
-
|
100 |
-
|
101 |
-
#### Training Hyperparameters
|
102 |
-
|
103 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
104 |
-
|
105 |
-
#### Speeds, Sizes, Times [optional]
|
106 |
-
|
107 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
108 |
-
|
109 |
-
[More Information Needed]
|
110 |
-
|
111 |
-
## Evaluation
|
112 |
-
|
113 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
114 |
-
|
115 |
-
### Testing Data, Factors & Metrics
|
116 |
-
|
117 |
-
#### Testing Data
|
118 |
-
|
119 |
-
<!-- This should link to a Dataset Card if possible. -->
|
120 |
-
|
121 |
-
[More Information Needed]
|
122 |
-
|
123 |
-
#### Factors
|
124 |
-
|
125 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
126 |
-
|
127 |
-
[More Information Needed]
|
128 |
-
|
129 |
-
#### Metrics
|
130 |
-
|
131 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
132 |
-
|
133 |
-
[More Information Needed]
|
134 |
-
|
135 |
-
### Results
|
136 |
-
|
137 |
-
[More Information Needed]
|
138 |
-
|
139 |
-
#### Summary
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
## Model Examination [optional]
|
144 |
-
|
145 |
-
<!-- Relevant interpretability work for the model goes here -->
|
146 |
-
|
147 |
-
[More Information Needed]
|
148 |
-
|
149 |
-
## Environmental Impact
|
150 |
-
|
151 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
152 |
-
|
153 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
154 |
-
|
155 |
-
- **Hardware Type:** [More Information Needed]
|
156 |
-
- **Hours used:** [More Information Needed]
|
157 |
-
- **Cloud Provider:** [More Information Needed]
|
158 |
-
- **Compute Region:** [More Information Needed]
|
159 |
-
- **Carbon Emitted:** [More Information Needed]
|
160 |
-
|
161 |
-
## Technical Specifications [optional]
|
162 |
-
|
163 |
-
### Model Architecture and Objective
|
164 |
|
165 |
-
|
166 |
|
167 |
-
|
|
|
168 |
|
169 |
-
|
170 |
|
171 |
-
|
172 |
|
173 |
-
|
|
|
|
|
174 |
|
175 |
-
|
|
|
|
|
176 |
|
177 |
-
|
|
|
|
|
178 |
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
-
|
|
|
|
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
186 |
|
187 |
-
**
|
|
|
|
|
188 |
|
189 |
-
|
190 |
|
191 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
-
|
|
|
|
|
194 |
|
195 |
-
|
196 |
|
197 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
-
|
200 |
|
201 |
-
##
|
|
|
|
|
|
|
202 |
|
203 |
-
|
204 |
|
205 |
-
##
|
|
|
206 |
|
207 |
-
|
|
|
|
|
|
5 |
- Shuu12121/java-codesearch-dataset-open
|
6 |
language:
|
7 |
- en
|
8 |
+
- ja
|
9 |
base_model:
|
10 |
- Shuu12121/CodeHawks-ModernBERT-1.0
|
11 |
pipeline_tag: sentence-similarity
|
12 |
tags:
|
13 |
- code
|
14 |
+
- code-search
|
15 |
+
- retrieval
|
16 |
+
- sentence-similarity
|
17 |
+
- bert
|
18 |
+
- transformers
|
19 |
+
- deep-learning
|
20 |
+
- machine-learning
|
21 |
+
- nlp
|
22 |
+
- programming
|
23 |
+
- multi-language
|
24 |
+
- rust
|
25 |
+
- python
|
26 |
+
- java
|
27 |
+
- javascript
|
28 |
+
- php
|
29 |
+
- ruby
|
30 |
+
- go
|
31 |
---
|
|
|
32 |
|
|
|
33 |
|
34 |
+
# **CodeModernBERT-Owl**
|
35 |
|
36 |
+
## **概要 / Overview**
|
37 |
|
38 |
+
### **🦉 CodeModernBERT-Owl: 高精度なコード検索 & コード理解モデル**
|
39 |
+
**CodeModernBERT-Owl** is a **pretrained model** designed from scratch for **code search and code understanding tasks**.
|
40 |
|
41 |
+
Compared to previous versions such as **CodeHawks-ModernBERT** and **CodeMorph-ModernBERT**, this model **now supports Rust** and **improves search accuracy** in Python, PHP, Java, JavaScript, Go, and Ruby.
|
42 |
|
43 |
+
### **🛠 主な特徴 / Key Features**
|
44 |
+
✅ **Supports long sequences up to 2048 tokens** (compared to Microsoft's 512-token models)
|
45 |
+
✅ **Optimized for code search, code understanding, and code clone detection**
|
46 |
+
✅ **Fine-tuned on GitHub open-source repositories (Java, Rust)**
|
47 |
+
✅ **Achieves the highest accuracy among the CodeHawks/CodeMorph series**
|
48 |
+
✅ **Multi-language support**: **Python, PHP, Java, JavaScript, Go, Ruby, and Rust**
|
49 |
|
50 |
+
---
|
51 |
|
52 |
+
## **📊 モデルパラメータ / Model Parameters**
|
53 |
+
| パラメータ / Parameter | 値 / Value |
|
54 |
+
|-------------------------|------------|
|
55 |
+
| **vocab_size** | 50,000 |
|
56 |
+
| **hidden_size** | 768 |
|
57 |
+
| **num_hidden_layers** | 12 |
|
58 |
+
| **num_attention_heads**| 12 |
|
59 |
+
| **intermediate_size** | 3,072 |
|
60 |
+
| **max_position_embeddings** | 2,048 |
|
61 |
+
| **type_vocab_size** | 2 |
|
62 |
+
| **hidden_dropout_prob**| 0.1 |
|
63 |
+
| **attention_probs_dropout_prob** | 0.1 |
|
64 |
+
| **local_attention_window** | 128 |
|
65 |
+
| **rope_theta** | 160,000 |
|
66 |
+
| **local_attention_rope_theta** | 10,000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
---
|
69 |
|
70 |
+
## **💻 モデルの使用方法 / How to Use**
|
71 |
+
This model can be easily loaded using the **Hugging Face Transformers** library.
|
72 |
|
73 |
+
⚠️ **Requires `transformers >= 4.48.0`**
|
74 |
|
75 |
+
🔗 **[Colab Demo (Replace with "CodeModernBERT-Owl")](https://github.com/Shun0212/CodeBERTPretrained/blob/main/UseMyCodeMorph_ModernBERT.ipynb)**
|
76 |
|
77 |
+
### **モデルのロード / Load the Model**
|
78 |
+
```python
|
79 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
80 |
|
81 |
+
tokenizer = AutoTokenizer.from_pretrained("Shuu12121/CodeModernBERT-Owl")
|
82 |
+
model = AutoModelForMaskedLM.from_pretrained("Shuu12121/CodeModernBERT-Owl")
|
83 |
+
```
|
84 |
|
85 |
+
### **コード埋め込みの取得 / Get Code Embeddings**
|
86 |
+
```python
|
87 |
+
import torch
|
88 |
|
89 |
+
def get_embedding(text, model, tokenizer, device="cuda"):
|
90 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256)
|
91 |
+
if "token_type_ids" in inputs:
|
92 |
+
inputs.pop("token_type_ids")
|
93 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
94 |
+
outputs = model.model(**inputs)
|
95 |
+
embedding = outputs.last_hidden_state[:, 0, :]
|
96 |
+
return embedding
|
97 |
|
98 |
+
embedding = get_embedding("def my_function(): pass", model, tokenizer)
|
99 |
+
print(embedding.shape)
|
100 |
+
```
|
101 |
|
102 |
+
---
|
103 |
|
104 |
+
# **🔍 評価結果 / Evaluation Results**
|
105 |
|
106 |
+
### **データセット / Dataset**
|
107 |
+
📌 **Tested on `code_x_glue_ct_code_to_text` with a candidate pool size of 100.**
|
108 |
+
📌 **Rust-specific evaluations were conducted using `Shuu12121/rust-codesearch-dataset-open`.**
|
109 |
|
110 |
+
---
|
111 |
|
112 |
+
## **📈 主要な評価指標の比較(同一シード値)/ Key Evaluation Metrics (Same Seed)**
|
113 |
+
| 言語 / Language | **CodeModernBERT-Owl** | **CodeHawks-ModernBERT** | **Salesforce CodeT5+** | **Microsoft CodeBERT** | **GraphCodeBERT** |
|
114 |
+
|-----------|-----------------|----------------------|-----------------|------------------|------------------|
|
115 |
+
| **Python** | **0.8793** | 0.8551 | 0.8266 | 0.5243 | 0.5493 |
|
116 |
+
| **Java** | **0.8880** | 0.7971 | **0.8867** | 0.3134 | 0.5879 |
|
117 |
+
| **JavaScript** | **0.8423** | 0.7634 | 0.7628 | 0.2694 | 0.5051 |
|
118 |
+
| **PHP** | **0.9129** | 0.8578 | **0.9027** | 0.2642 | 0.6225 |
|
119 |
+
| **Ruby** | **0.8038** | 0.7469 | **0.7568** | 0.3318 | 0.5876 |
|
120 |
+
| **Go** | **0.9386** | 0.9043 | 0.8117 | 0.3262 | 0.4243 |
|
121 |
|
122 |
+
✅ **Achieves the highest accuracy in all target languages.**
|
123 |
+
✅ **Significantly improved Java accuracy using additional fine-tuned GitHub data.**
|
124 |
+
✅ **Outperforms previous models, especially in PHP and Go.**
|
125 |
|
126 |
+
---
|
127 |
|
128 |
+
## **📊 Rust (独自データセット) / Rust Performance**
|
129 |
+
| 指標 / Metric | **CodeModernBERT-Owl** |
|
130 |
+
|--------------|----------------|
|
131 |
+
| **MRR** | 0.7940 |
|
132 |
+
| **MAP** | 0.7940 |
|
133 |
+
| **R-Precision** | 0.7173 |
|
134 |
+
|
135 |
+
### **📌 K別評価指標 / Evaluation Metrics by K**
|
136 |
+
| K | **Recall@K** | **Precision@K** | **NDCG@K** | **F1@K** | **Success Rate@K** | **Query Coverage@K** |
|
137 |
+
|----|-------------|---------------|------------|--------|-----------------|-----------------|
|
138 |
+
| **1** | 0.7173 | 0.7173 | 0.7173 | 0.7173 | 0.7173 | 0.7173 |
|
139 |
+
| **5** | 0.8913 | 0.7852 | 0.8118 | 0.8132 | 0.8913 | 0.8913 |
|
140 |
+
| **10** | 0.9333 | 0.7908 | 0.8254 | 0.8230 | 0.9333 | 0.9333 |
|
141 |
+
| **50** | 0.9887 | 0.7938 | 0.8383 | 0.8288 | 0.9887 | 0.9887 |
|
142 |
+
| **100** | 1.0000 | 0.7940 | 0.8401 | 0.8291 | 1.0000 | 1.0000 |
|
143 |
|
144 |
+
---
|
145 |
|
146 |
+
## **📝 結論 / Conclusion**
|
147 |
+
✅ **Top performance in all languages**
|
148 |
+
✅ **Rust support successfully added through dataset augmentation**
|
149 |
+
✅ **Further performance improvements possible with better datasets**
|
150 |
|
151 |
+
---
|
152 |
|
153 |
+
## **📜 ライセンス / License**
|
154 |
+
📄 **Apache 2.0**
|
155 |
|
156 |
+
## **📧 連絡先 / Contact**
|
157 |
+
📩 **For any questions, please contact:**
|
158 |
+
📧 **[email protected]**
|