|
import random
|
|
import sys
|
|
from importlib.resources import files
|
|
|
|
import soundfile as sf
|
|
import tqdm
|
|
from cached_path import cached_path
|
|
|
|
from f5_tts.infer.utils_infer import (
|
|
hop_length,
|
|
infer_process,
|
|
load_model,
|
|
load_vocoder,
|
|
preprocess_ref_audio_text,
|
|
remove_silence_for_generated_wav,
|
|
save_spectrogram,
|
|
transcribe,
|
|
target_sample_rate,
|
|
)
|
|
from f5_tts.model import DiT, UNetT
|
|
from f5_tts.model.utils import seed_everything
|
|
|
|
|
|
class F5TTS:
|
|
def __init__(
|
|
self,
|
|
model_type="F5-TTS",
|
|
ckpt_file="",
|
|
vocab_file="",
|
|
ode_method="euler",
|
|
use_ema=True,
|
|
vocoder_name="vocos",
|
|
local_path=None,
|
|
device=None,
|
|
hf_cache_dir=None,
|
|
):
|
|
|
|
self.final_wave = None
|
|
self.target_sample_rate = target_sample_rate
|
|
self.hop_length = hop_length
|
|
self.seed = -1
|
|
self.mel_spec_type = vocoder_name
|
|
|
|
|
|
if device is not None:
|
|
self.device = device
|
|
else:
|
|
import torch
|
|
|
|
self.device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
|
|
|
|
|
self.load_vocoder_model(vocoder_name, local_path=local_path, hf_cache_dir=hf_cache_dir)
|
|
self.load_ema_model(
|
|
model_type, ckpt_file, vocoder_name, vocab_file, ode_method, use_ema, hf_cache_dir=hf_cache_dir
|
|
)
|
|
|
|
def load_vocoder_model(self, vocoder_name, local_path=None, hf_cache_dir=None):
|
|
self.vocoder = load_vocoder(vocoder_name, local_path is not None, local_path, self.device, hf_cache_dir)
|
|
|
|
def load_ema_model(self, model_type, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema, hf_cache_dir=None):
|
|
if model_type == "F5-TTS":
|
|
if not ckpt_file:
|
|
if mel_spec_type == "vocos":
|
|
ckpt_file = str(
|
|
cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors", cache_dir=hf_cache_dir)
|
|
)
|
|
elif mel_spec_type == "bigvgan":
|
|
ckpt_file = str(
|
|
cached_path("hf://SWivid/F5-TTS/F5TTS_Base_bigvgan/model_1250000.pt", cache_dir=hf_cache_dir)
|
|
)
|
|
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
|
model_cls = DiT
|
|
elif model_type == "E2-TTS":
|
|
if not ckpt_file:
|
|
ckpt_file = str(
|
|
cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors", cache_dir=hf_cache_dir)
|
|
)
|
|
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
|
model_cls = UNetT
|
|
else:
|
|
raise ValueError(f"Unknown model type: {model_type}")
|
|
|
|
self.ema_model = load_model(
|
|
model_cls, model_cfg, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema, self.device
|
|
)
|
|
|
|
def transcribe(self, ref_audio, language=None):
|
|
return transcribe(ref_audio, language)
|
|
|
|
def export_wav(self, wav, file_wave, remove_silence=False):
|
|
sf.write(file_wave, wav, self.target_sample_rate)
|
|
|
|
if remove_silence:
|
|
remove_silence_for_generated_wav(file_wave)
|
|
|
|
def export_spectrogram(self, spect, file_spect):
|
|
save_spectrogram(spect, file_spect)
|
|
|
|
def infer(
|
|
self,
|
|
ref_file,
|
|
ref_text,
|
|
gen_text,
|
|
show_info=print,
|
|
progress=tqdm,
|
|
target_rms=0.1,
|
|
cross_fade_duration=0.15,
|
|
sway_sampling_coef=-1,
|
|
cfg_strength=2,
|
|
nfe_step=32,
|
|
speed=1.0,
|
|
fix_duration=None,
|
|
remove_silence=False,
|
|
file_wave=None,
|
|
file_spect=None,
|
|
seed=-1,
|
|
):
|
|
if seed == -1:
|
|
seed = random.randint(0, sys.maxsize)
|
|
seed_everything(seed)
|
|
self.seed = seed
|
|
|
|
ref_file, ref_text = preprocess_ref_audio_text(ref_file, ref_text, device=self.device)
|
|
|
|
wav, sr, spect = infer_process(
|
|
ref_file,
|
|
ref_text,
|
|
gen_text,
|
|
self.ema_model,
|
|
self.vocoder,
|
|
self.mel_spec_type,
|
|
show_info=show_info,
|
|
progress=progress,
|
|
target_rms=target_rms,
|
|
cross_fade_duration=cross_fade_duration,
|
|
nfe_step=nfe_step,
|
|
cfg_strength=cfg_strength,
|
|
sway_sampling_coef=sway_sampling_coef,
|
|
speed=speed,
|
|
fix_duration=fix_duration,
|
|
device=self.device,
|
|
)
|
|
|
|
if file_wave is not None:
|
|
self.export_wav(wav, file_wave, remove_silence)
|
|
|
|
if file_spect is not None:
|
|
self.export_spectrogram(spect, file_spect)
|
|
|
|
return wav, sr, spect
|
|
|
|
|
|
if __name__ == "__main__":
|
|
f5tts = F5TTS()
|
|
|
|
wav, sr, spect = f5tts.infer(
|
|
ref_file=str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav")),
|
|
ref_text="some call me nature, others call me mother nature.",
|
|
gen_text="""I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.""",
|
|
file_wave=str(files("f5_tts").joinpath("../../tests/api_out.wav")),
|
|
file_spect=str(files("f5_tts").joinpath("../../tests/api_out.png")),
|
|
seed=-1,
|
|
)
|
|
|
|
print("seed :", f5tts.seed)
|
|
|