Update README.md
Browse files
README.md
CHANGED
@@ -32,3 +32,86 @@ The following `bitsandbytes` quantization config was used during training:
|
|
32 |
- PEFT 0.5.0
|
33 |
|
34 |
- PEFT 0.5.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
- PEFT 0.5.0
|
33 |
|
34 |
- PEFT 0.5.0
|
35 |
+
# Inference Code
|
36 |
+
|
37 |
+
### Install required libraries
|
38 |
+
|
39 |
+
```python
|
40 |
+
!pip install transformers peft
|
41 |
+
```
|
42 |
+
### Login
|
43 |
+
```python
|
44 |
+
from huggingface_hub import login
|
45 |
+
|
46 |
+
token = "Your Key"
|
47 |
+
login(token)
|
48 |
+
```
|
49 |
+
#### Import necessary modules
|
50 |
+
```python
|
51 |
+
from peft import PeftModel, PeftConfig
|
52 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
53 |
+
import torch
|
54 |
+
from transformers import BitsAndBytesConfig
|
55 |
+
from peft import prepare_model_for_kbit_training
|
56 |
+
```
|
57 |
+
#### Load PEFT model and configuration
|
58 |
+
```python
|
59 |
+
config = PeftConfig.from_pretrained("Shreyas45/Llama2_Text-to-SQL_Fintuned")
|
60 |
+
peft_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
61 |
+
peft_model = PeftModel.from_pretrained(peft_model, "Shreyas45/Llama2_Text-to-SQL_Fintuned")
|
62 |
+
```
|
63 |
+
### Load trained model and tokenizer
|
64 |
+
```python
|
65 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
66 |
+
from peft import prepare_model_for_kbit_training
|
67 |
+
|
68 |
+
trained_model_tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, trust_remote_code=True)
|
69 |
+
trained_model_tokenizer.pad_token = trained_model_tokenizer.eos_token
|
70 |
+
```
|
71 |
+
|
72 |
+
### Define a SQL query
|
73 |
+
```python
|
74 |
+
query = '''In the table named management with columns (department_id VARCHAR, temporary_acting VARCHAR);
|
75 |
+
CREATE TABLE department (name VARCHAR, num_employees VARCHAR, department_id VARCHAR),
|
76 |
+
Show the name and number of employees for the departments managed by heads whose temporary acting value is 'Yes'?'''
|
77 |
+
```
|
78 |
+
|
79 |
+
### Construct prompt
|
80 |
+
```python
|
81 |
+
prompt = f'''### Instruction: Below is an instruction that describes a task and the schema of the table in the database.
|
82 |
+
Write a response that generates a request in the form of a SQL query.
|
83 |
+
Here the schema of the table is mentioned first followed by the question for which the query needs to be generated.
|
84 |
+
And the question is: {query}
|
85 |
+
###Output: '''
|
86 |
+
```
|
87 |
+
### Tokenize the prompt
|
88 |
+
```python
|
89 |
+
encodings = trained_model_tokenizer(prompt, return_tensors='pt')
|
90 |
+
```
|
91 |
+
#### Configure generation parameters
|
92 |
+
```python
|
93 |
+
|
94 |
+
generation_config = peft_model.generation_config
|
95 |
+
generation_config.max_new_token = 1024
|
96 |
+
generation_config.temperature = 0.7
|
97 |
+
generation_config.top_p = 0.7
|
98 |
+
generation_config.num_return_sequence = 1
|
99 |
+
generation_config.pad_token_id = trained_model_tokenizer.pad_token_id
|
100 |
+
generation_config.eos_token_id = trained_model_tokenizer.eos_token_id
|
101 |
+
```
|
102 |
+
### Generate SQL query using the model
|
103 |
+
```python
|
104 |
+
with torch.inference_mode():
|
105 |
+
outputs = peft_model.generate(
|
106 |
+
input_ids=encodings.input_ids,
|
107 |
+
attention_mask=encodings.attention_mask,
|
108 |
+
generation_config=generation_config,
|
109 |
+
max_new_tokens=100
|
110 |
+
)
|
111 |
+
```
|
112 |
+
### Decode and print the generated SQL query
|
113 |
+
```python
|
114 |
+
generated_query = trained_model_tokenizer.decode(outputs[0])
|
115 |
+
print("Generated SQL Query:")
|
116 |
+
print(generated_query)
|
117 |
+
```
|