Shivus commited on
Commit
2665a07
·
1 Parent(s): 96ac81e
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -134.10 +/- 32.54
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff219a05290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff219a05320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff219a053b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff219a05440>", "_build": "<function ActorCriticPolicy._build at 0x7ff219a054d0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff219a05560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff219a055f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff219a05680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff219a05710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff219a057a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff219a05830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff219a54780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661435581.9793417, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAClwr37iZg+hhGWP0Y+uL8ZfNG/0DhhPgAAAAAAAAAA6oTPvn3asj7r3re+7IqPv5yMDL9O/si9AAAAAAAAAADTRIM+7em3PkB5GD/xWCe/Z3Ynvv4q9j0AAAAAAAAAAEBkpT4VrLg/HF8FP8Vsyr6KYMa89ruePgAAAAAAAAAAEjQRP9GOZj9eY8Q+mw/6vq4qjz4iJmw8AAAAAAAAAAANLIo9o72uP50NLD+pH1C+9taNvbq1v70AAAAAAAAAAANMBD+lakQ/cCwWPmBDH78XZkC+6UhGvgAAAAAAAAAAVtS1vndq8z4ydjG/7VJxv1pVjb2WsMy8AAAAAAAAAACqT/E+2Kl1PyXu1D7fYCS/b9R9PpxEIT4AAAAAAAAAALMAkb3M9/0+QUoavlElcb87ITM+CqkNvQAAAAAAAAAABh0qP3l/hD62eL8+zV0hvxrHpD7S+vE9AAAAAAAAAACgEEe+yzojP3L63z4hpCq/OxbYvmLGIj4AAAAAAAAAAABxib1aXb4/ZToEv0Y3CT7OQGA9jcpTPQAAAAAAAAAAAMByvIzwrT/rQ46+YI3LvoJGvjzz5949AAAAAAAAAAAzEN+9vFqSP9A6376Kohm/AdGcva2KqL0AAAAAAAAAABOnu74rx5c+zqRJvvwqkL/hzU2/uhnZvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGTigpSuwUsCUhpRSlIwBbJRLQYwBdJRHQHM00iY9gWt1fZQoaAZoCWgPQwhVTntKzgxUwJSGlFKUaBVLvWgWR0BzNXej2zv7dX2UKGgGaAloD0MI3QcgtYnxScCUhpRSlGgVS3FoFkdAczZBo24usnV9lChoBmgJaA9DCF38bU+QGljAlIaUUpRoFUutaBZHQHM2vbKzRhN1fZQoaAZoCWgPQwjNWDSdnZRawJSGlFKUaBVLV2gWR0BzN7pMYdhidX2UKGgGaAloD0MI5bm+DwdYUsCUhpRSlGgVS6FoFkdAczgiADq4Y3V9lChoBmgJaA9DCEht4uR+SmTAlIaUUpRoFUuVaBZHQHM4VfmcOLB1fZQoaAZoCWgPQwi/7nTnCc9rwJSGlFKUaBVLlWgWR0BzOLTz/ZM+dX2UKGgGaAloD0MIeSKI83DQQsCUhpRSlGgVS2loFkdAczqT2nKnvXV9lChoBmgJaA9DCFKbOLnfM1DAlIaUUpRoFUuUaBZHQHM6zRIBikR1fZQoaAZoCWgPQwidLSC0HrhmwJSGlFKUaBVLkmgWR0BzOy/Zdv87dX2UKGgGaAloD0MI1EUKZeF3SsCUhpRSlGgVS3JoFkdAczxG8VYZEXV9lChoBmgJaA9DCJcA/FOqP1nAlIaUUpRoFUu3aBZHQHM8zOkcjqx1fZQoaAZoCWgPQwiLbyh8tu9WwJSGlFKUaBVLm2gWR0BzPRGMGX5WdX2UKGgGaAloD0MIR3TPukYNUMCUhpRSlGgVS3RoFkdAcz5UtqYZ23V9lChoBmgJaA9DCFCop49AWWbAlIaUUpRoFUuLaBZHQHM+/N3W4Ex1fZQoaAZoCWgPQwjYZmMl5mNUwJSGlFKUaBVLfGgWR0BzP6mpEQXidX2UKGgGaAloD0MI/MitSbekVcCUhpRSlGgVS2VoFkdAcz/Q79ycTnV9lChoBmgJaA9DCIl8l1KXLAFAlIaUUpRoFUteaBZHQHM/5kTYdyV1fZQoaAZoCWgPQwiFP8ObNTRBQJSGlFKUaBVL5GgWR0BzQATzundgdX2UKGgGaAloD0MIS+oENBHWMkCUhpRSlGgVS2xoFkdAcz/+BYmsvXV9lChoBmgJaA9DCPtYwW9DAlHAlIaUUpRoFUuKaBZHQHNBI42jwhJ1fZQoaAZoCWgPQwirItxkVFFLwJSGlFKUaBVLVmgWR0BzQVKEnLJTdX2UKGgGaAloD0MITyMtlbdJU8CUhpRSlGgVS7poFkdAc0LF0xM363V9lChoBmgJaA9DCCV6GcXyh2XAlIaUUpRoFUuOaBZHQHNC9ovi97F1fZQoaAZoCWgPQwh6qG3DKJBcwJSGlFKUaBVLdWgWR0BzQ13fQ8fWdX2UKGgGaAloD0MIS1tc4zNNS8CUhpRSlGgVS05oFkdAc0WPPszEaXV9lChoBmgJaA9DCL+1EyUhclLAlIaUUpRoFUt3aBZHQHNFpZr56+p1fZQoaAZoCWgPQwh0sz9QbqMgQJSGlFKUaBVLkGgWR0BzRdedCmdidX2UKGgGaAloD0MIjQkxl9QAZMCUhpRSlGgVS4hoFkdAc0ZFyq+8G3V9lChoBmgJaA9DCPCLS1XaZ1LAlIaUUpRoFUtwaBZHQHNGbJwKjSJ1fZQoaAZoCWgPQwikpl1MM61YwJSGlFKUaBVLb2gWR0BzR5QvYe1bdX2UKGgGaAloD0MIOgX52cgOUMCUhpRSlGgVS2toFkdAc0eT1CgK4XV9lChoBmgJaA9DCPmE7LyNzUzAlIaUUpRoFUuBaBZHQHNIOpbUwzt1fZQoaAZoCWgPQwh0mZoEbxg9wJSGlFKUaBVLdWgWR0BzSDmxMWXUdX2UKGgGaAloD0MIIM8u3/peXsCUhpRSlGgVS2toFkdAc0jsi0OVgXV9lChoBmgJaA9DCEQxeQPMPBvAlIaUUpRoFUuqaBZHQHNJAjQiRnx1fZQoaAZoCWgPQwihLlIoC8ZQwJSGlFKUaBVLc2gWR0BzSVRfnfVJdX2UKGgGaAloD0MI+BxYjpBNWcCUhpRSlGgVS1xoFkdAc0l4mCyyEHV9lChoBmgJaA9DCHrejQVFG3PAlIaUUpRoFUtnaBZHQHNKlPacqe91fZQoaAZoCWgPQwjNzqJ3KmhAwJSGlFKUaBVLn2gWR0BzSxgy/KyOdX2UKGgGaAloD0MITG4UWWuwQsCUhpRSlGgVS39oFkdAc0u371qWT3V9lChoBmgJaA9DCBXJVwIpUFXAlIaUUpRoFUtXaBZHQHNMczhxYJV1fZQoaAZoCWgPQwgGD9O+uRVLwJSGlFKUaBVLWWgWR0BzTHX5FgDzdX2UKGgGaAloD0MIzxPP2QL6P8CUhpRSlGgVS2JoFkdAc0ylolD4QHV9lChoBmgJaA9DCDnSGRh5gVTAlIaUUpRoFUt7aBZHQHNOLj5sTFl1fZQoaAZoCWgPQwhd+pekMm08wJSGlFKUaBVLf2gWR0BzTomNR3vAdX2UKGgGaAloD0MIiiKkbmc1SMCUhpRSlGgVS2FoFkdAc0+iW3Sa3XV9lChoBmgJaA9DCCIzF7g8hknAlIaUUpRoFUtuaBZHQHNP2cSXdCV1fZQoaAZoCWgPQwjNj7+0qEc8wJSGlFKUaBVLd2gWR0BzT9tNzr/sdX2UKGgGaAloD0MIlUc3wqJsUsCUhpRSlGgVS01oFkdAc1HdPtUn5XV9lChoBmgJaA9DCFKeeTnsZFfAlIaUUpRoFUuRaBZHQHNSarilzlt1fZQoaAZoCWgPQwgNpfYi2k5bwJSGlFKUaBVLjmgWR0BzU2oESuhcdX2UKGgGaAloD0MI2gBsQISoMMCUhpRSlGgVS2NoFkdAc1OiblRxcXV9lChoBmgJaA9DCHr9SXzu3D7AlIaUUpRoFUucaBZHQHNUMERradt1fZQoaAZoCWgPQwj5hVeSPGZSwJSGlFKUaBVLhmgWR0BzVE2fkFOgdX2UKGgGaAloD0MINpVFYZebYsCUhpRSlGgVS39oFkdAc1RMRHww03V9lChoBmgJaA9DCCmvldBdaGHAlIaUUpRoFUulaBZHQHNVXQY1pCd1fZQoaAZoCWgPQwgYJlMFo1IzwJSGlFKUaBVLimgWR0BzVtEofCAMdX2UKGgGaAloD0MIzJntCn3gMUCUhpRSlGgVS2loFkdAc1eWC2+fy3V9lChoBmgJaA9DCGwGuCBbnErAlIaUUpRoFUukaBZHQHNXwCbMHKR1fZQoaAZoCWgPQwjLvcCsUNBWwJSGlFKUaBVLf2gWR0BzWXggow23dX2UKGgGaAloD0MI5QtaSMCwLUCUhpRSlGgVS6JoFkdAc1pW1c+qznV9lChoBmgJaA9DCPD3i9mSWFPAlIaUUpRoFUtPaBZHQHNaWAskIHF1fZQoaAZoCWgPQwi5xmeyf8hAwJSGlFKUaBVLp2gWR0BzWydsi0OWdX2UKGgGaAloD0MI76oHzEOPUsCUhpRSlGgVS3JoFkdAc1tPgvUSZnV9lChoBmgJaA9DCMobYOY7Vk/AlIaUUpRoFUt/aBZHQHNbzSkTHsF1fZQoaAZoCWgPQwize/KwUJ9JwJSGlFKUaBVLnWgWR0BzW/uKGcnWdX2UKGgGaAloD0MIEY/Ey1NTZcCUhpRSlGgVTRkBaBZHQHNcYBBAv+R1fZQoaAZoCWgPQwg6WP/nMNVQwJSGlFKUaBVLbWgWR0BzXKn2qT8pdX2UKGgGaAloD0MIqYWSyamxVsCUhpRSlGgVS1hoFkdAc12zkIX0oXV9lChoBmgJaA9DCLhZvFgYYFLAlIaUUpRoFUt2aBZHQHNedQ40dil1fZQoaAZoCWgPQwgGE38UdelTwJSGlFKUaBVLiGgWR0BzXrYvnKW+dX2UKGgGaAloD0MI01CjkGSdWMCUhpRSlGgVS5NoFkdAc17w9JSR83V9lChoBmgJaA9DCFq77UJzU0DAlIaUUpRoFUtwaBZHQHNgRRQ79yd1fZQoaAZoCWgPQwg4TgrzHg9AwJSGlFKUaBVLrWgWR0BzYJK8L8aXdX2UKGgGaAloD0MIjKNyE7UIPMCUhpRSlGgVS1NoFkdAc2CR6Ww/xHV9lChoBmgJaA9DCNl8XBsqmjrAlIaUUpRoFUtKaBZHQHNgqF23azx1fZQoaAZoCWgPQwjmAwKdSSNOwJSGlFKUaBVLVWgWR0BzYLi6xxDLdX2UKGgGaAloD0MIdSDrqVXiYMCUhpRSlGgVS3BoFkdAc2G2GZeAu3V9lChoBmgJaA9DCPdWJCaomUjAlIaUUpRoFUt4aBZHQHNjwIMSbph1fZQoaAZoCWgPQwh7Mv/om09QwJSGlFKUaBVLYGgWR0BzZD8tPHktdX2UKGgGaAloD0MIQxzr4jZKE8CUhpRSlGgVS7BoFkdAc2RpAD7qIXV9lChoBmgJaA9DCLaizXFuNWfAlIaUUpRoFUuEaBZHQHNlLYoRZlp1fZQoaAZoCWgPQwietdsuNNVEwJSGlFKUaBVLcGgWR0BzZnb5/LDAdX2UKGgGaAloD0MIjUEnhA7CXMCUhpRSlGgVS3VoFkdAc2aWvbGm13V9lChoBmgJaA9DCDEL7ZxmA0HAlIaUUpRoFUuRaBZHQHNm4OUdJat1fZQoaAZoCWgPQwgCnN7F+2EowJSGlFKUaBVLXmgWR0BzZxyyUs4DdX2UKGgGaAloD0MIVI7J4v7/QsCUhpRSlGgVS6xoFkdAc2gFLWZqmHV9lChoBmgJaA9DCJ+Qnbex0TZAlIaUUpRoFUtsaBZHQHNoNJrcj7h1fZQoaAZoCWgPQwioHJPFfeNiwJSGlFKUaBVLb2gWR0BzaFu76Hj7dX2UKGgGaAloD0MIyTmxh/bzVMCUhpRSlGgVS3BoFkdAc2iLncL0BnV9lChoBmgJaA9DCObMdoU+XkvAlIaUUpRoFUt7aBZHQHNo3AEdNnJ1fZQoaAZoCWgPQwibkqzD0TNtwJSGlFKUaBVLuGgWR0BzaU8mrsBydX2UKGgGaAloD0MIPusaLQeiTMCUhpRSlGgVS29oFkdAc2mRWLgn+nV9lChoBmgJaA9DCI0IxsGlv0/AlIaUUpRoFUumaBZHQHNqcFyJbdJ1fZQoaAZoCWgPQwjG20qvzUFjwJSGlFKUaBVLbWgWR0Bza92Rq46PdX2UKGgGaAloD0MIt9CVCFQrNMCUhpRSlGgVS3hoFkdAc2zHoX9BKXV9lChoBmgJaA9DCBGq1OyBxlXAlIaUUpRoFUs+aBZHQHNtAeeWfK91fZQoaAZoCWgPQwhAahMn92lUwJSGlFKUaBVLdGgWR0BzbUaBI4EPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (258 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -134.10423592313236, "std_reward": 32.54009158614956, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-25T14:02:36.640653"}
test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:347bb08eeb41297b42786b5343e759585fab2a4153057bcee63623472f76b30a
3
+ size 147017
test/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
test/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff219a05290>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff219a05320>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff219a053b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff219a05440>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff219a054d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff219a05560>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff219a055f0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff219a05680>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff219a05710>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff219a057a0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff219a05830>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ff219a54780>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 114688,
46
+ "_total_timesteps": 100000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1661435581.9793417,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAClwr37iZg+hhGWP0Y+uL8ZfNG/0DhhPgAAAAAAAAAA6oTPvn3asj7r3re+7IqPv5yMDL9O/si9AAAAAAAAAADTRIM+7em3PkB5GD/xWCe/Z3Ynvv4q9j0AAAAAAAAAAEBkpT4VrLg/HF8FP8Vsyr6KYMa89ruePgAAAAAAAAAAEjQRP9GOZj9eY8Q+mw/6vq4qjz4iJmw8AAAAAAAAAAANLIo9o72uP50NLD+pH1C+9taNvbq1v70AAAAAAAAAAANMBD+lakQ/cCwWPmBDH78XZkC+6UhGvgAAAAAAAAAAVtS1vndq8z4ydjG/7VJxv1pVjb2WsMy8AAAAAAAAAACqT/E+2Kl1PyXu1D7fYCS/b9R9PpxEIT4AAAAAAAAAALMAkb3M9/0+QUoavlElcb87ITM+CqkNvQAAAAAAAAAABh0qP3l/hD62eL8+zV0hvxrHpD7S+vE9AAAAAAAAAACgEEe+yzojP3L63z4hpCq/OxbYvmLGIj4AAAAAAAAAAABxib1aXb4/ZToEv0Y3CT7OQGA9jcpTPQAAAAAAAAAAAMByvIzwrT/rQ46+YI3LvoJGvjzz5949AAAAAAAAAAAzEN+9vFqSP9A6376Kohm/AdGcva2KqL0AAAAAAAAAABOnu74rx5c+zqRJvvwqkL/hzU2/uhnZvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.1468799999999999,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGTigpSuwUsCUhpRSlIwBbJRLQYwBdJRHQHM00iY9gWt1fZQoaAZoCWgPQwhVTntKzgxUwJSGlFKUaBVLvWgWR0BzNXej2zv7dX2UKGgGaAloD0MI3QcgtYnxScCUhpRSlGgVS3FoFkdAczZBo24usnV9lChoBmgJaA9DCF38bU+QGljAlIaUUpRoFUutaBZHQHM2vbKzRhN1fZQoaAZoCWgPQwjNWDSdnZRawJSGlFKUaBVLV2gWR0BzN7pMYdhidX2UKGgGaAloD0MI5bm+DwdYUsCUhpRSlGgVS6FoFkdAczgiADq4Y3V9lChoBmgJaA9DCEht4uR+SmTAlIaUUpRoFUuVaBZHQHM4VfmcOLB1fZQoaAZoCWgPQwi/7nTnCc9rwJSGlFKUaBVLlWgWR0BzOLTz/ZM+dX2UKGgGaAloD0MIeSKI83DQQsCUhpRSlGgVS2loFkdAczqT2nKnvXV9lChoBmgJaA9DCFKbOLnfM1DAlIaUUpRoFUuUaBZHQHM6zRIBikR1fZQoaAZoCWgPQwidLSC0HrhmwJSGlFKUaBVLkmgWR0BzOy/Zdv87dX2UKGgGaAloD0MI1EUKZeF3SsCUhpRSlGgVS3JoFkdAczxG8VYZEXV9lChoBmgJaA9DCJcA/FOqP1nAlIaUUpRoFUu3aBZHQHM8zOkcjqx1fZQoaAZoCWgPQwiLbyh8tu9WwJSGlFKUaBVLm2gWR0BzPRGMGX5WdX2UKGgGaAloD0MIR3TPukYNUMCUhpRSlGgVS3RoFkdAcz5UtqYZ23V9lChoBmgJaA9DCFCop49AWWbAlIaUUpRoFUuLaBZHQHM+/N3W4Ex1fZQoaAZoCWgPQwjYZmMl5mNUwJSGlFKUaBVLfGgWR0BzP6mpEQXidX2UKGgGaAloD0MI/MitSbekVcCUhpRSlGgVS2VoFkdAcz/Q79ycTnV9lChoBmgJaA9DCIl8l1KXLAFAlIaUUpRoFUteaBZHQHM/5kTYdyV1fZQoaAZoCWgPQwiFP8ObNTRBQJSGlFKUaBVL5GgWR0BzQATzundgdX2UKGgGaAloD0MIS+oENBHWMkCUhpRSlGgVS2xoFkdAcz/+BYmsvXV9lChoBmgJaA9DCPtYwW9DAlHAlIaUUpRoFUuKaBZHQHNBI42jwhJ1fZQoaAZoCWgPQwirItxkVFFLwJSGlFKUaBVLVmgWR0BzQVKEnLJTdX2UKGgGaAloD0MITyMtlbdJU8CUhpRSlGgVS7poFkdAc0LF0xM363V9lChoBmgJaA9DCCV6GcXyh2XAlIaUUpRoFUuOaBZHQHNC9ovi97F1fZQoaAZoCWgPQwh6qG3DKJBcwJSGlFKUaBVLdWgWR0BzQ13fQ8fWdX2UKGgGaAloD0MIS1tc4zNNS8CUhpRSlGgVS05oFkdAc0WPPszEaXV9lChoBmgJaA9DCL+1EyUhclLAlIaUUpRoFUt3aBZHQHNFpZr56+p1fZQoaAZoCWgPQwh0sz9QbqMgQJSGlFKUaBVLkGgWR0BzRdedCmdidX2UKGgGaAloD0MIjQkxl9QAZMCUhpRSlGgVS4hoFkdAc0ZFyq+8G3V9lChoBmgJaA9DCPCLS1XaZ1LAlIaUUpRoFUtwaBZHQHNGbJwKjSJ1fZQoaAZoCWgPQwikpl1MM61YwJSGlFKUaBVLb2gWR0BzR5QvYe1bdX2UKGgGaAloD0MIOgX52cgOUMCUhpRSlGgVS2toFkdAc0eT1CgK4XV9lChoBmgJaA9DCPmE7LyNzUzAlIaUUpRoFUuBaBZHQHNIOpbUwzt1fZQoaAZoCWgPQwh0mZoEbxg9wJSGlFKUaBVLdWgWR0BzSDmxMWXUdX2UKGgGaAloD0MIIM8u3/peXsCUhpRSlGgVS2toFkdAc0jsi0OVgXV9lChoBmgJaA9DCEQxeQPMPBvAlIaUUpRoFUuqaBZHQHNJAjQiRnx1fZQoaAZoCWgPQwihLlIoC8ZQwJSGlFKUaBVLc2gWR0BzSVRfnfVJdX2UKGgGaAloD0MI+BxYjpBNWcCUhpRSlGgVS1xoFkdAc0l4mCyyEHV9lChoBmgJaA9DCHrejQVFG3PAlIaUUpRoFUtnaBZHQHNKlPacqe91fZQoaAZoCWgPQwjNzqJ3KmhAwJSGlFKUaBVLn2gWR0BzSxgy/KyOdX2UKGgGaAloD0MITG4UWWuwQsCUhpRSlGgVS39oFkdAc0u371qWT3V9lChoBmgJaA9DCBXJVwIpUFXAlIaUUpRoFUtXaBZHQHNMczhxYJV1fZQoaAZoCWgPQwgGD9O+uRVLwJSGlFKUaBVLWWgWR0BzTHX5FgDzdX2UKGgGaAloD0MIzxPP2QL6P8CUhpRSlGgVS2JoFkdAc0ylolD4QHV9lChoBmgJaA9DCDnSGRh5gVTAlIaUUpRoFUt7aBZHQHNOLj5sTFl1fZQoaAZoCWgPQwhd+pekMm08wJSGlFKUaBVLf2gWR0BzTomNR3vAdX2UKGgGaAloD0MIiiKkbmc1SMCUhpRSlGgVS2FoFkdAc0+iW3Sa3XV9lChoBmgJaA9DCCIzF7g8hknAlIaUUpRoFUtuaBZHQHNP2cSXdCV1fZQoaAZoCWgPQwjNj7+0qEc8wJSGlFKUaBVLd2gWR0BzT9tNzr/sdX2UKGgGaAloD0MIlUc3wqJsUsCUhpRSlGgVS01oFkdAc1HdPtUn5XV9lChoBmgJaA9DCFKeeTnsZFfAlIaUUpRoFUuRaBZHQHNSarilzlt1fZQoaAZoCWgPQwgNpfYi2k5bwJSGlFKUaBVLjmgWR0BzU2oESuhcdX2UKGgGaAloD0MI2gBsQISoMMCUhpRSlGgVS2NoFkdAc1OiblRxcXV9lChoBmgJaA9DCHr9SXzu3D7AlIaUUpRoFUucaBZHQHNUMERradt1fZQoaAZoCWgPQwj5hVeSPGZSwJSGlFKUaBVLhmgWR0BzVE2fkFOgdX2UKGgGaAloD0MINpVFYZebYsCUhpRSlGgVS39oFkdAc1RMRHww03V9lChoBmgJaA9DCCmvldBdaGHAlIaUUpRoFUulaBZHQHNVXQY1pCd1fZQoaAZoCWgPQwgYJlMFo1IzwJSGlFKUaBVLimgWR0BzVtEofCAMdX2UKGgGaAloD0MIzJntCn3gMUCUhpRSlGgVS2loFkdAc1eWC2+fy3V9lChoBmgJaA9DCGwGuCBbnErAlIaUUpRoFUukaBZHQHNXwCbMHKR1fZQoaAZoCWgPQwjLvcCsUNBWwJSGlFKUaBVLf2gWR0BzWXggow23dX2UKGgGaAloD0MI5QtaSMCwLUCUhpRSlGgVS6JoFkdAc1pW1c+qznV9lChoBmgJaA9DCPD3i9mSWFPAlIaUUpRoFUtPaBZHQHNaWAskIHF1fZQoaAZoCWgPQwi5xmeyf8hAwJSGlFKUaBVLp2gWR0BzWydsi0OWdX2UKGgGaAloD0MI76oHzEOPUsCUhpRSlGgVS3JoFkdAc1tPgvUSZnV9lChoBmgJaA9DCMobYOY7Vk/AlIaUUpRoFUt/aBZHQHNbzSkTHsF1fZQoaAZoCWgPQwize/KwUJ9JwJSGlFKUaBVLnWgWR0BzW/uKGcnWdX2UKGgGaAloD0MIEY/Ey1NTZcCUhpRSlGgVTRkBaBZHQHNcYBBAv+R1fZQoaAZoCWgPQwg6WP/nMNVQwJSGlFKUaBVLbWgWR0BzXKn2qT8pdX2UKGgGaAloD0MIqYWSyamxVsCUhpRSlGgVS1hoFkdAc12zkIX0oXV9lChoBmgJaA9DCLhZvFgYYFLAlIaUUpRoFUt2aBZHQHNedQ40dil1fZQoaAZoCWgPQwgGE38UdelTwJSGlFKUaBVLiGgWR0BzXrYvnKW+dX2UKGgGaAloD0MI01CjkGSdWMCUhpRSlGgVS5NoFkdAc17w9JSR83V9lChoBmgJaA9DCFq77UJzU0DAlIaUUpRoFUtwaBZHQHNgRRQ79yd1fZQoaAZoCWgPQwg4TgrzHg9AwJSGlFKUaBVLrWgWR0BzYJK8L8aXdX2UKGgGaAloD0MIjKNyE7UIPMCUhpRSlGgVS1NoFkdAc2CR6Ww/xHV9lChoBmgJaA9DCNl8XBsqmjrAlIaUUpRoFUtKaBZHQHNgqF23azx1fZQoaAZoCWgPQwjmAwKdSSNOwJSGlFKUaBVLVWgWR0BzYLi6xxDLdX2UKGgGaAloD0MIdSDrqVXiYMCUhpRSlGgVS3BoFkdAc2G2GZeAu3V9lChoBmgJaA9DCPdWJCaomUjAlIaUUpRoFUt4aBZHQHNjwIMSbph1fZQoaAZoCWgPQwh7Mv/om09QwJSGlFKUaBVLYGgWR0BzZD8tPHktdX2UKGgGaAloD0MIQxzr4jZKE8CUhpRSlGgVS7BoFkdAc2RpAD7qIXV9lChoBmgJaA9DCLaizXFuNWfAlIaUUpRoFUuEaBZHQHNlLYoRZlp1fZQoaAZoCWgPQwietdsuNNVEwJSGlFKUaBVLcGgWR0BzZnb5/LDAdX2UKGgGaAloD0MIjUEnhA7CXMCUhpRSlGgVS3VoFkdAc2aWvbGm13V9lChoBmgJaA9DCDEL7ZxmA0HAlIaUUpRoFUuRaBZHQHNm4OUdJat1fZQoaAZoCWgPQwgCnN7F+2EowJSGlFKUaBVLXmgWR0BzZxyyUs4DdX2UKGgGaAloD0MIVI7J4v7/QsCUhpRSlGgVS6xoFkdAc2gFLWZqmHV9lChoBmgJaA9DCJ+Qnbex0TZAlIaUUpRoFUtsaBZHQHNoNJrcj7h1fZQoaAZoCWgPQwioHJPFfeNiwJSGlFKUaBVLb2gWR0BzaFu76Hj7dX2UKGgGaAloD0MIyTmxh/bzVMCUhpRSlGgVS3BoFkdAc2iLncL0BnV9lChoBmgJaA9DCObMdoU+XkvAlIaUUpRoFUt7aBZHQHNo3AEdNnJ1fZQoaAZoCWgPQwibkqzD0TNtwJSGlFKUaBVLuGgWR0BzaU8mrsBydX2UKGgGaAloD0MIPusaLQeiTMCUhpRSlGgVS29oFkdAc2mRWLgn+nV9lChoBmgJaA9DCI0IxsGlv0/AlIaUUpRoFUumaBZHQHNqcFyJbdJ1fZQoaAZoCWgPQwjG20qvzUFjwJSGlFKUaBVLbWgWR0Bza92Rq46PdX2UKGgGaAloD0MIt9CVCFQrNMCUhpRSlGgVS3hoFkdAc2zHoX9BKXV9lChoBmgJaA9DCBGq1OyBxlXAlIaUUpRoFUs+aBZHQHNtAeeWfK91fZQoaAZoCWgPQwhAahMn92lUwJSGlFKUaBVLdGgWR0BzbUaBI4EPdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 28,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
test/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56a329578384f0b989e65c6f35899675cb0358aa0f30f60099bcbff933b7a41a
3
+ size 87865
test/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94946a18a1231a260e46b28826868610ebbc64572b141b38d093e92589d7f0f0
3
+ size 43201
test/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
test/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0