yikes
Browse files- README.md +36 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- test.zip +3 -0
- test/_stable_baselines3_version +1 -0
- test/data +94 -0
- test/policy.optimizer.pth +3 -0
- test/policy.pth +3 -0
- test/pytorch_variables.pth +3 -0
- test/system_info.txt +7 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -134.10 +/- 32.54
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff219a05290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff219a05320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff219a053b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff219a05440>", "_build": "<function ActorCriticPolicy._build at 0x7ff219a054d0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff219a05560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff219a055f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff219a05680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff219a05710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff219a057a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff219a05830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff219a54780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661435581.9793417, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAClwr37iZg+hhGWP0Y+uL8ZfNG/0DhhPgAAAAAAAAAA6oTPvn3asj7r3re+7IqPv5yMDL9O/si9AAAAAAAAAADTRIM+7em3PkB5GD/xWCe/Z3Ynvv4q9j0AAAAAAAAAAEBkpT4VrLg/HF8FP8Vsyr6KYMa89ruePgAAAAAAAAAAEjQRP9GOZj9eY8Q+mw/6vq4qjz4iJmw8AAAAAAAAAAANLIo9o72uP50NLD+pH1C+9taNvbq1v70AAAAAAAAAAANMBD+lakQ/cCwWPmBDH78XZkC+6UhGvgAAAAAAAAAAVtS1vndq8z4ydjG/7VJxv1pVjb2WsMy8AAAAAAAAAACqT/E+2Kl1PyXu1D7fYCS/b9R9PpxEIT4AAAAAAAAAALMAkb3M9/0+QUoavlElcb87ITM+CqkNvQAAAAAAAAAABh0qP3l/hD62eL8+zV0hvxrHpD7S+vE9AAAAAAAAAACgEEe+yzojP3L63z4hpCq/OxbYvmLGIj4AAAAAAAAAAABxib1aXb4/ZToEv0Y3CT7OQGA9jcpTPQAAAAAAAAAAAMByvIzwrT/rQ46+YI3LvoJGvjzz5949AAAAAAAAAAAzEN+9vFqSP9A6376Kohm/AdGcva2KqL0AAAAAAAAAABOnu74rx5c+zqRJvvwqkL/hzU2/uhnZvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGTigpSuwUsCUhpRSlIwBbJRLQYwBdJRHQHM00iY9gWt1fZQoaAZoCWgPQwhVTntKzgxUwJSGlFKUaBVLvWgWR0BzNXej2zv7dX2UKGgGaAloD0MI3QcgtYnxScCUhpRSlGgVS3FoFkdAczZBo24usnV9lChoBmgJaA9DCF38bU+QGljAlIaUUpRoFUutaBZHQHM2vbKzRhN1fZQoaAZoCWgPQwjNWDSdnZRawJSGlFKUaBVLV2gWR0BzN7pMYdhidX2UKGgGaAloD0MI5bm+DwdYUsCUhpRSlGgVS6FoFkdAczgiADq4Y3V9lChoBmgJaA9DCEht4uR+SmTAlIaUUpRoFUuVaBZHQHM4VfmcOLB1fZQoaAZoCWgPQwi/7nTnCc9rwJSGlFKUaBVLlWgWR0BzOLTz/ZM+dX2UKGgGaAloD0MIeSKI83DQQsCUhpRSlGgVS2loFkdAczqT2nKnvXV9lChoBmgJaA9DCFKbOLnfM1DAlIaUUpRoFUuUaBZHQHM6zRIBikR1fZQoaAZoCWgPQwidLSC0HrhmwJSGlFKUaBVLkmgWR0BzOy/Zdv87dX2UKGgGaAloD0MI1EUKZeF3SsCUhpRSlGgVS3JoFkdAczxG8VYZEXV9lChoBmgJaA9DCJcA/FOqP1nAlIaUUpRoFUu3aBZHQHM8zOkcjqx1fZQoaAZoCWgPQwiLbyh8tu9WwJSGlFKUaBVLm2gWR0BzPRGMGX5WdX2UKGgGaAloD0MIR3TPukYNUMCUhpRSlGgVS3RoFkdAcz5UtqYZ23V9lChoBmgJaA9DCFCop49AWWbAlIaUUpRoFUuLaBZHQHM+/N3W4Ex1fZQoaAZoCWgPQwjYZmMl5mNUwJSGlFKUaBVLfGgWR0BzP6mpEQXidX2UKGgGaAloD0MI/MitSbekVcCUhpRSlGgVS2VoFkdAcz/Q79ycTnV9lChoBmgJaA9DCIl8l1KXLAFAlIaUUpRoFUteaBZHQHM/5kTYdyV1fZQoaAZoCWgPQwiFP8ObNTRBQJSGlFKUaBVL5GgWR0BzQATzundgdX2UKGgGaAloD0MIS+oENBHWMkCUhpRSlGgVS2xoFkdAcz/+BYmsvXV9lChoBmgJaA9DCPtYwW9DAlHAlIaUUpRoFUuKaBZHQHNBI42jwhJ1fZQoaAZoCWgPQwirItxkVFFLwJSGlFKUaBVLVmgWR0BzQVKEnLJTdX2UKGgGaAloD0MITyMtlbdJU8CUhpRSlGgVS7poFkdAc0LF0xM363V9lChoBmgJaA9DCCV6GcXyh2XAlIaUUpRoFUuOaBZHQHNC9ovi97F1fZQoaAZoCWgPQwh6qG3DKJBcwJSGlFKUaBVLdWgWR0BzQ13fQ8fWdX2UKGgGaAloD0MIS1tc4zNNS8CUhpRSlGgVS05oFkdAc0WPPszEaXV9lChoBmgJaA9DCL+1EyUhclLAlIaUUpRoFUt3aBZHQHNFpZr56+p1fZQoaAZoCWgPQwh0sz9QbqMgQJSGlFKUaBVLkGgWR0BzRdedCmdidX2UKGgGaAloD0MIjQkxl9QAZMCUhpRSlGgVS4hoFkdAc0ZFyq+8G3V9lChoBmgJaA9DCPCLS1XaZ1LAlIaUUpRoFUtwaBZHQHNGbJwKjSJ1fZQoaAZoCWgPQwikpl1MM61YwJSGlFKUaBVLb2gWR0BzR5QvYe1bdX2UKGgGaAloD0MIOgX52cgOUMCUhpRSlGgVS2toFkdAc0eT1CgK4XV9lChoBmgJaA9DCPmE7LyNzUzAlIaUUpRoFUuBaBZHQHNIOpbUwzt1fZQoaAZoCWgPQwh0mZoEbxg9wJSGlFKUaBVLdWgWR0BzSDmxMWXUdX2UKGgGaAloD0MIIM8u3/peXsCUhpRSlGgVS2toFkdAc0jsi0OVgXV9lChoBmgJaA9DCEQxeQPMPBvAlIaUUpRoFUuqaBZHQHNJAjQiRnx1fZQoaAZoCWgPQwihLlIoC8ZQwJSGlFKUaBVLc2gWR0BzSVRfnfVJdX2UKGgGaAloD0MI+BxYjpBNWcCUhpRSlGgVS1xoFkdAc0l4mCyyEHV9lChoBmgJaA9DCHrejQVFG3PAlIaUUpRoFUtnaBZHQHNKlPacqe91fZQoaAZoCWgPQwjNzqJ3KmhAwJSGlFKUaBVLn2gWR0BzSxgy/KyOdX2UKGgGaAloD0MITG4UWWuwQsCUhpRSlGgVS39oFkdAc0u371qWT3V9lChoBmgJaA9DCBXJVwIpUFXAlIaUUpRoFUtXaBZHQHNMczhxYJV1fZQoaAZoCWgPQwgGD9O+uRVLwJSGlFKUaBVLWWgWR0BzTHX5FgDzdX2UKGgGaAloD0MIzxPP2QL6P8CUhpRSlGgVS2JoFkdAc0ylolD4QHV9lChoBmgJaA9DCDnSGRh5gVTAlIaUUpRoFUt7aBZHQHNOLj5sTFl1fZQoaAZoCWgPQwhd+pekMm08wJSGlFKUaBVLf2gWR0BzTomNR3vAdX2UKGgGaAloD0MIiiKkbmc1SMCUhpRSlGgVS2FoFkdAc0+iW3Sa3XV9lChoBmgJaA9DCCIzF7g8hknAlIaUUpRoFUtuaBZHQHNP2cSXdCV1fZQoaAZoCWgPQwjNj7+0qEc8wJSGlFKUaBVLd2gWR0BzT9tNzr/sdX2UKGgGaAloD0MIlUc3wqJsUsCUhpRSlGgVS01oFkdAc1HdPtUn5XV9lChoBmgJaA9DCFKeeTnsZFfAlIaUUpRoFUuRaBZHQHNSarilzlt1fZQoaAZoCWgPQwgNpfYi2k5bwJSGlFKUaBVLjmgWR0BzU2oESuhcdX2UKGgGaAloD0MI2gBsQISoMMCUhpRSlGgVS2NoFkdAc1OiblRxcXV9lChoBmgJaA9DCHr9SXzu3D7AlIaUUpRoFUucaBZHQHNUMERradt1fZQoaAZoCWgPQwj5hVeSPGZSwJSGlFKUaBVLhmgWR0BzVE2fkFOgdX2UKGgGaAloD0MINpVFYZebYsCUhpRSlGgVS39oFkdAc1RMRHww03V9lChoBmgJaA9DCCmvldBdaGHAlIaUUpRoFUulaBZHQHNVXQY1pCd1fZQoaAZoCWgPQwgYJlMFo1IzwJSGlFKUaBVLimgWR0BzVtEofCAMdX2UKGgGaAloD0MIzJntCn3gMUCUhpRSlGgVS2loFkdAc1eWC2+fy3V9lChoBmgJaA9DCGwGuCBbnErAlIaUUpRoFUukaBZHQHNXwCbMHKR1fZQoaAZoCWgPQwjLvcCsUNBWwJSGlFKUaBVLf2gWR0BzWXggow23dX2UKGgGaAloD0MI5QtaSMCwLUCUhpRSlGgVS6JoFkdAc1pW1c+qznV9lChoBmgJaA9DCPD3i9mSWFPAlIaUUpRoFUtPaBZHQHNaWAskIHF1fZQoaAZoCWgPQwi5xmeyf8hAwJSGlFKUaBVLp2gWR0BzWydsi0OWdX2UKGgGaAloD0MI76oHzEOPUsCUhpRSlGgVS3JoFkdAc1tPgvUSZnV9lChoBmgJaA9DCMobYOY7Vk/AlIaUUpRoFUt/aBZHQHNbzSkTHsF1fZQoaAZoCWgPQwize/KwUJ9JwJSGlFKUaBVLnWgWR0BzW/uKGcnWdX2UKGgGaAloD0MIEY/Ey1NTZcCUhpRSlGgVTRkBaBZHQHNcYBBAv+R1fZQoaAZoCWgPQwg6WP/nMNVQwJSGlFKUaBVLbWgWR0BzXKn2qT8pdX2UKGgGaAloD0MIqYWSyamxVsCUhpRSlGgVS1hoFkdAc12zkIX0oXV9lChoBmgJaA9DCLhZvFgYYFLAlIaUUpRoFUt2aBZHQHNedQ40dil1fZQoaAZoCWgPQwgGE38UdelTwJSGlFKUaBVLiGgWR0BzXrYvnKW+dX2UKGgGaAloD0MI01CjkGSdWMCUhpRSlGgVS5NoFkdAc17w9JSR83V9lChoBmgJaA9DCFq77UJzU0DAlIaUUpRoFUtwaBZHQHNgRRQ79yd1fZQoaAZoCWgPQwg4TgrzHg9AwJSGlFKUaBVLrWgWR0BzYJK8L8aXdX2UKGgGaAloD0MIjKNyE7UIPMCUhpRSlGgVS1NoFkdAc2CR6Ww/xHV9lChoBmgJaA9DCNl8XBsqmjrAlIaUUpRoFUtKaBZHQHNgqF23azx1fZQoaAZoCWgPQwjmAwKdSSNOwJSGlFKUaBVLVWgWR0BzYLi6xxDLdX2UKGgGaAloD0MIdSDrqVXiYMCUhpRSlGgVS3BoFkdAc2G2GZeAu3V9lChoBmgJaA9DCPdWJCaomUjAlIaUUpRoFUt4aBZHQHNjwIMSbph1fZQoaAZoCWgPQwh7Mv/om09QwJSGlFKUaBVLYGgWR0BzZD8tPHktdX2UKGgGaAloD0MIQxzr4jZKE8CUhpRSlGgVS7BoFkdAc2RpAD7qIXV9lChoBmgJaA9DCLaizXFuNWfAlIaUUpRoFUuEaBZHQHNlLYoRZlp1fZQoaAZoCWgPQwietdsuNNVEwJSGlFKUaBVLcGgWR0BzZnb5/LDAdX2UKGgGaAloD0MIjUEnhA7CXMCUhpRSlGgVS3VoFkdAc2aWvbGm13V9lChoBmgJaA9DCDEL7ZxmA0HAlIaUUpRoFUuRaBZHQHNm4OUdJat1fZQoaAZoCWgPQwgCnN7F+2EowJSGlFKUaBVLXmgWR0BzZxyyUs4DdX2UKGgGaAloD0MIVI7J4v7/QsCUhpRSlGgVS6xoFkdAc2gFLWZqmHV9lChoBmgJaA9DCJ+Qnbex0TZAlIaUUpRoFUtsaBZHQHNoNJrcj7h1fZQoaAZoCWgPQwioHJPFfeNiwJSGlFKUaBVLb2gWR0BzaFu76Hj7dX2UKGgGaAloD0MIyTmxh/bzVMCUhpRSlGgVS3BoFkdAc2iLncL0BnV9lChoBmgJaA9DCObMdoU+XkvAlIaUUpRoFUt7aBZHQHNo3AEdNnJ1fZQoaAZoCWgPQwibkqzD0TNtwJSGlFKUaBVLuGgWR0BzaU8mrsBydX2UKGgGaAloD0MIPusaLQeiTMCUhpRSlGgVS29oFkdAc2mRWLgn+nV9lChoBmgJaA9DCI0IxsGlv0/AlIaUUpRoFUumaBZHQHNqcFyJbdJ1fZQoaAZoCWgPQwjG20qvzUFjwJSGlFKUaBVLbWgWR0Bza92Rq46PdX2UKGgGaAloD0MIt9CVCFQrNMCUhpRSlGgVS3hoFkdAc2zHoX9BKXV9lChoBmgJaA9DCBGq1OyBxlXAlIaUUpRoFUs+aBZHQHNtAeeWfK91fZQoaAZoCWgPQwhAahMn92lUwJSGlFKUaBVLdGgWR0BzbUaBI4EPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (258 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -134.10423592313236, "std_reward": 32.54009158614956, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-25T14:02:36.640653"}
|
test.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:347bb08eeb41297b42786b5343e759585fab2a4153057bcee63623472f76b30a
|
3 |
+
size 147017
|
test/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
test/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff219a05290>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff219a05320>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff219a053b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff219a05440>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff219a054d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff219a05560>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff219a055f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff219a05680>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff219a05710>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff219a057a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff219a05830>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff219a54780>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 114688,
|
46 |
+
"_total_timesteps": 100000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1661435581.9793417,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAClwr37iZg+hhGWP0Y+uL8ZfNG/0DhhPgAAAAAAAAAA6oTPvn3asj7r3re+7IqPv5yMDL9O/si9AAAAAAAAAADTRIM+7em3PkB5GD/xWCe/Z3Ynvv4q9j0AAAAAAAAAAEBkpT4VrLg/HF8FP8Vsyr6KYMa89ruePgAAAAAAAAAAEjQRP9GOZj9eY8Q+mw/6vq4qjz4iJmw8AAAAAAAAAAANLIo9o72uP50NLD+pH1C+9taNvbq1v70AAAAAAAAAAANMBD+lakQ/cCwWPmBDH78XZkC+6UhGvgAAAAAAAAAAVtS1vndq8z4ydjG/7VJxv1pVjb2WsMy8AAAAAAAAAACqT/E+2Kl1PyXu1D7fYCS/b9R9PpxEIT4AAAAAAAAAALMAkb3M9/0+QUoavlElcb87ITM+CqkNvQAAAAAAAAAABh0qP3l/hD62eL8+zV0hvxrHpD7S+vE9AAAAAAAAAACgEEe+yzojP3L63z4hpCq/OxbYvmLGIj4AAAAAAAAAAABxib1aXb4/ZToEv0Y3CT7OQGA9jcpTPQAAAAAAAAAAAMByvIzwrT/rQ46+YI3LvoJGvjzz5949AAAAAAAAAAAzEN+9vFqSP9A6376Kohm/AdGcva2KqL0AAAAAAAAAABOnu74rx5c+zqRJvvwqkL/hzU2/uhnZvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.1468799999999999,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGTigpSuwUsCUhpRSlIwBbJRLQYwBdJRHQHM00iY9gWt1fZQoaAZoCWgPQwhVTntKzgxUwJSGlFKUaBVLvWgWR0BzNXej2zv7dX2UKGgGaAloD0MI3QcgtYnxScCUhpRSlGgVS3FoFkdAczZBo24usnV9lChoBmgJaA9DCF38bU+QGljAlIaUUpRoFUutaBZHQHM2vbKzRhN1fZQoaAZoCWgPQwjNWDSdnZRawJSGlFKUaBVLV2gWR0BzN7pMYdhidX2UKGgGaAloD0MI5bm+DwdYUsCUhpRSlGgVS6FoFkdAczgiADq4Y3V9lChoBmgJaA9DCEht4uR+SmTAlIaUUpRoFUuVaBZHQHM4VfmcOLB1fZQoaAZoCWgPQwi/7nTnCc9rwJSGlFKUaBVLlWgWR0BzOLTz/ZM+dX2UKGgGaAloD0MIeSKI83DQQsCUhpRSlGgVS2loFkdAczqT2nKnvXV9lChoBmgJaA9DCFKbOLnfM1DAlIaUUpRoFUuUaBZHQHM6zRIBikR1fZQoaAZoCWgPQwidLSC0HrhmwJSGlFKUaBVLkmgWR0BzOy/Zdv87dX2UKGgGaAloD0MI1EUKZeF3SsCUhpRSlGgVS3JoFkdAczxG8VYZEXV9lChoBmgJaA9DCJcA/FOqP1nAlIaUUpRoFUu3aBZHQHM8zOkcjqx1fZQoaAZoCWgPQwiLbyh8tu9WwJSGlFKUaBVLm2gWR0BzPRGMGX5WdX2UKGgGaAloD0MIR3TPukYNUMCUhpRSlGgVS3RoFkdAcz5UtqYZ23V9lChoBmgJaA9DCFCop49AWWbAlIaUUpRoFUuLaBZHQHM+/N3W4Ex1fZQoaAZoCWgPQwjYZmMl5mNUwJSGlFKUaBVLfGgWR0BzP6mpEQXidX2UKGgGaAloD0MI/MitSbekVcCUhpRSlGgVS2VoFkdAcz/Q79ycTnV9lChoBmgJaA9DCIl8l1KXLAFAlIaUUpRoFUteaBZHQHM/5kTYdyV1fZQoaAZoCWgPQwiFP8ObNTRBQJSGlFKUaBVL5GgWR0BzQATzundgdX2UKGgGaAloD0MIS+oENBHWMkCUhpRSlGgVS2xoFkdAcz/+BYmsvXV9lChoBmgJaA9DCPtYwW9DAlHAlIaUUpRoFUuKaBZHQHNBI42jwhJ1fZQoaAZoCWgPQwirItxkVFFLwJSGlFKUaBVLVmgWR0BzQVKEnLJTdX2UKGgGaAloD0MITyMtlbdJU8CUhpRSlGgVS7poFkdAc0LF0xM363V9lChoBmgJaA9DCCV6GcXyh2XAlIaUUpRoFUuOaBZHQHNC9ovi97F1fZQoaAZoCWgPQwh6qG3DKJBcwJSGlFKUaBVLdWgWR0BzQ13fQ8fWdX2UKGgGaAloD0MIS1tc4zNNS8CUhpRSlGgVS05oFkdAc0WPPszEaXV9lChoBmgJaA9DCL+1EyUhclLAlIaUUpRoFUt3aBZHQHNFpZr56+p1fZQoaAZoCWgPQwh0sz9QbqMgQJSGlFKUaBVLkGgWR0BzRdedCmdidX2UKGgGaAloD0MIjQkxl9QAZMCUhpRSlGgVS4hoFkdAc0ZFyq+8G3V9lChoBmgJaA9DCPCLS1XaZ1LAlIaUUpRoFUtwaBZHQHNGbJwKjSJ1fZQoaAZoCWgPQwikpl1MM61YwJSGlFKUaBVLb2gWR0BzR5QvYe1bdX2UKGgGaAloD0MIOgX52cgOUMCUhpRSlGgVS2toFkdAc0eT1CgK4XV9lChoBmgJaA9DCPmE7LyNzUzAlIaUUpRoFUuBaBZHQHNIOpbUwzt1fZQoaAZoCWgPQwh0mZoEbxg9wJSGlFKUaBVLdWgWR0BzSDmxMWXUdX2UKGgGaAloD0MIIM8u3/peXsCUhpRSlGgVS2toFkdAc0jsi0OVgXV9lChoBmgJaA9DCEQxeQPMPBvAlIaUUpRoFUuqaBZHQHNJAjQiRnx1fZQoaAZoCWgPQwihLlIoC8ZQwJSGlFKUaBVLc2gWR0BzSVRfnfVJdX2UKGgGaAloD0MI+BxYjpBNWcCUhpRSlGgVS1xoFkdAc0l4mCyyEHV9lChoBmgJaA9DCHrejQVFG3PAlIaUUpRoFUtnaBZHQHNKlPacqe91fZQoaAZoCWgPQwjNzqJ3KmhAwJSGlFKUaBVLn2gWR0BzSxgy/KyOdX2UKGgGaAloD0MITG4UWWuwQsCUhpRSlGgVS39oFkdAc0u371qWT3V9lChoBmgJaA9DCBXJVwIpUFXAlIaUUpRoFUtXaBZHQHNMczhxYJV1fZQoaAZoCWgPQwgGD9O+uRVLwJSGlFKUaBVLWWgWR0BzTHX5FgDzdX2UKGgGaAloD0MIzxPP2QL6P8CUhpRSlGgVS2JoFkdAc0ylolD4QHV9lChoBmgJaA9DCDnSGRh5gVTAlIaUUpRoFUt7aBZHQHNOLj5sTFl1fZQoaAZoCWgPQwhd+pekMm08wJSGlFKUaBVLf2gWR0BzTomNR3vAdX2UKGgGaAloD0MIiiKkbmc1SMCUhpRSlGgVS2FoFkdAc0+iW3Sa3XV9lChoBmgJaA9DCCIzF7g8hknAlIaUUpRoFUtuaBZHQHNP2cSXdCV1fZQoaAZoCWgPQwjNj7+0qEc8wJSGlFKUaBVLd2gWR0BzT9tNzr/sdX2UKGgGaAloD0MIlUc3wqJsUsCUhpRSlGgVS01oFkdAc1HdPtUn5XV9lChoBmgJaA9DCFKeeTnsZFfAlIaUUpRoFUuRaBZHQHNSarilzlt1fZQoaAZoCWgPQwgNpfYi2k5bwJSGlFKUaBVLjmgWR0BzU2oESuhcdX2UKGgGaAloD0MI2gBsQISoMMCUhpRSlGgVS2NoFkdAc1OiblRxcXV9lChoBmgJaA9DCHr9SXzu3D7AlIaUUpRoFUucaBZHQHNUMERradt1fZQoaAZoCWgPQwj5hVeSPGZSwJSGlFKUaBVLhmgWR0BzVE2fkFOgdX2UKGgGaAloD0MINpVFYZebYsCUhpRSlGgVS39oFkdAc1RMRHww03V9lChoBmgJaA9DCCmvldBdaGHAlIaUUpRoFUulaBZHQHNVXQY1pCd1fZQoaAZoCWgPQwgYJlMFo1IzwJSGlFKUaBVLimgWR0BzVtEofCAMdX2UKGgGaAloD0MIzJntCn3gMUCUhpRSlGgVS2loFkdAc1eWC2+fy3V9lChoBmgJaA9DCGwGuCBbnErAlIaUUpRoFUukaBZHQHNXwCbMHKR1fZQoaAZoCWgPQwjLvcCsUNBWwJSGlFKUaBVLf2gWR0BzWXggow23dX2UKGgGaAloD0MI5QtaSMCwLUCUhpRSlGgVS6JoFkdAc1pW1c+qznV9lChoBmgJaA9DCPD3i9mSWFPAlIaUUpRoFUtPaBZHQHNaWAskIHF1fZQoaAZoCWgPQwi5xmeyf8hAwJSGlFKUaBVLp2gWR0BzWydsi0OWdX2UKGgGaAloD0MI76oHzEOPUsCUhpRSlGgVS3JoFkdAc1tPgvUSZnV9lChoBmgJaA9DCMobYOY7Vk/AlIaUUpRoFUt/aBZHQHNbzSkTHsF1fZQoaAZoCWgPQwize/KwUJ9JwJSGlFKUaBVLnWgWR0BzW/uKGcnWdX2UKGgGaAloD0MIEY/Ey1NTZcCUhpRSlGgVTRkBaBZHQHNcYBBAv+R1fZQoaAZoCWgPQwg6WP/nMNVQwJSGlFKUaBVLbWgWR0BzXKn2qT8pdX2UKGgGaAloD0MIqYWSyamxVsCUhpRSlGgVS1hoFkdAc12zkIX0oXV9lChoBmgJaA9DCLhZvFgYYFLAlIaUUpRoFUt2aBZHQHNedQ40dil1fZQoaAZoCWgPQwgGE38UdelTwJSGlFKUaBVLiGgWR0BzXrYvnKW+dX2UKGgGaAloD0MI01CjkGSdWMCUhpRSlGgVS5NoFkdAc17w9JSR83V9lChoBmgJaA9DCFq77UJzU0DAlIaUUpRoFUtwaBZHQHNgRRQ79yd1fZQoaAZoCWgPQwg4TgrzHg9AwJSGlFKUaBVLrWgWR0BzYJK8L8aXdX2UKGgGaAloD0MIjKNyE7UIPMCUhpRSlGgVS1NoFkdAc2CR6Ww/xHV9lChoBmgJaA9DCNl8XBsqmjrAlIaUUpRoFUtKaBZHQHNgqF23azx1fZQoaAZoCWgPQwjmAwKdSSNOwJSGlFKUaBVLVWgWR0BzYLi6xxDLdX2UKGgGaAloD0MIdSDrqVXiYMCUhpRSlGgVS3BoFkdAc2G2GZeAu3V9lChoBmgJaA9DCPdWJCaomUjAlIaUUpRoFUt4aBZHQHNjwIMSbph1fZQoaAZoCWgPQwh7Mv/om09QwJSGlFKUaBVLYGgWR0BzZD8tPHktdX2UKGgGaAloD0MIQxzr4jZKE8CUhpRSlGgVS7BoFkdAc2RpAD7qIXV9lChoBmgJaA9DCLaizXFuNWfAlIaUUpRoFUuEaBZHQHNlLYoRZlp1fZQoaAZoCWgPQwietdsuNNVEwJSGlFKUaBVLcGgWR0BzZnb5/LDAdX2UKGgGaAloD0MIjUEnhA7CXMCUhpRSlGgVS3VoFkdAc2aWvbGm13V9lChoBmgJaA9DCDEL7ZxmA0HAlIaUUpRoFUuRaBZHQHNm4OUdJat1fZQoaAZoCWgPQwgCnN7F+2EowJSGlFKUaBVLXmgWR0BzZxyyUs4DdX2UKGgGaAloD0MIVI7J4v7/QsCUhpRSlGgVS6xoFkdAc2gFLWZqmHV9lChoBmgJaA9DCJ+Qnbex0TZAlIaUUpRoFUtsaBZHQHNoNJrcj7h1fZQoaAZoCWgPQwioHJPFfeNiwJSGlFKUaBVLb2gWR0BzaFu76Hj7dX2UKGgGaAloD0MIyTmxh/bzVMCUhpRSlGgVS3BoFkdAc2iLncL0BnV9lChoBmgJaA9DCObMdoU+XkvAlIaUUpRoFUt7aBZHQHNo3AEdNnJ1fZQoaAZoCWgPQwibkqzD0TNtwJSGlFKUaBVLuGgWR0BzaU8mrsBydX2UKGgGaAloD0MIPusaLQeiTMCUhpRSlGgVS29oFkdAc2mRWLgn+nV9lChoBmgJaA9DCI0IxsGlv0/AlIaUUpRoFUumaBZHQHNqcFyJbdJ1fZQoaAZoCWgPQwjG20qvzUFjwJSGlFKUaBVLbWgWR0Bza92Rq46PdX2UKGgGaAloD0MIt9CVCFQrNMCUhpRSlGgVS3hoFkdAc2zHoX9BKXV9lChoBmgJaA9DCBGq1OyBxlXAlIaUUpRoFUs+aBZHQHNtAeeWfK91fZQoaAZoCWgPQwhAahMn92lUwJSGlFKUaBVLdGgWR0BzbUaBI4EPdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 28,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
test/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56a329578384f0b989e65c6f35899675cb0358aa0f30f60099bcbff933b7a41a
|
3 |
+
size 87865
|
test/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94946a18a1231a260e46b28826868610ebbc64572b141b38d093e92589d7f0f0
|
3 |
+
size 43201
|
test/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
test/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|