Shengkun commited on
Commit
5c80d11
·
verified ·
1 Parent(s): 0167d37

Upload LlamaForCausalLM

Browse files
config.json ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_llama.DarwinLMConfig",
9
+ "AutoModelForCausalLM": "modeling_llama_3.LlamaForCausalLM"
10
+ },
11
+ "bos_token_id": 1,
12
+ "dim_each_mlp": {
13
+ "0.mlp.down_proj": 3104,
14
+ "1.mlp.down_proj": 8032,
15
+ "10.mlp.down_proj": 1824,
16
+ "11.mlp.down_proj": 0,
17
+ "12.mlp.down_proj": 3104,
18
+ "13.mlp.down_proj": 5280,
19
+ "14.mlp.down_proj": 5280,
20
+ "15.mlp.down_proj": 4256,
21
+ "16.mlp.down_proj": 4256,
22
+ "17.mlp.down_proj": 6496,
23
+ "18.mlp.down_proj": 6496,
24
+ "19.mlp.down_proj": 5280,
25
+ "2.mlp.down_proj": 6496,
26
+ "20.mlp.down_proj": 3104,
27
+ "21.mlp.down_proj": 4256,
28
+ "22.mlp.down_proj": 4256,
29
+ "23.mlp.down_proj": 3104,
30
+ "24.mlp.down_proj": 3104,
31
+ "25.mlp.down_proj": 3104,
32
+ "26.mlp.down_proj": 4256,
33
+ "27.mlp.down_proj": 3104,
34
+ "28.mlp.down_proj": 3104,
35
+ "29.mlp.down_proj": 3104,
36
+ "3.mlp.down_proj": 4256,
37
+ "30.mlp.down_proj": 6496,
38
+ "31.mlp.down_proj": 6496,
39
+ "4.mlp.down_proj": 5280,
40
+ "5.mlp.down_proj": 5280,
41
+ "6.mlp.down_proj": 4256,
42
+ "7.mlp.down_proj": 3104,
43
+ "8.mlp.down_proj": 5280,
44
+ "9.mlp.down_proj": 4256
45
+ },
46
+ "eos_token_id": 2,
47
+ "head_dim": 128,
48
+ "heads_each_attn": {
49
+ "0.self_attn.o_proj": 7,
50
+ "1.self_attn.o_proj": 11,
51
+ "10.self_attn.o_proj": 14,
52
+ "11.self_attn.o_proj": 32,
53
+ "12.self_attn.o_proj": 32,
54
+ "13.self_attn.o_proj": 4,
55
+ "14.self_attn.o_proj": 11,
56
+ "15.self_attn.o_proj": 22,
57
+ "16.self_attn.o_proj": 14,
58
+ "17.self_attn.o_proj": 18,
59
+ "18.self_attn.o_proj": 22,
60
+ "19.self_attn.o_proj": 14,
61
+ "2.self_attn.o_proj": 14,
62
+ "20.self_attn.o_proj": 22,
63
+ "21.self_attn.o_proj": 22,
64
+ "22.self_attn.o_proj": 22,
65
+ "23.self_attn.o_proj": 18,
66
+ "24.self_attn.o_proj": 32,
67
+ "25.self_attn.o_proj": 32,
68
+ "26.self_attn.o_proj": 18,
69
+ "27.self_attn.o_proj": 31,
70
+ "28.self_attn.o_proj": 28,
71
+ "29.self_attn.o_proj": 32,
72
+ "3.self_attn.o_proj": 14,
73
+ "30.self_attn.o_proj": 26,
74
+ "31.self_attn.o_proj": 32,
75
+ "4.self_attn.o_proj": 18,
76
+ "5.self_attn.o_proj": 22,
77
+ "6.self_attn.o_proj": 18,
78
+ "7.self_attn.o_proj": 22,
79
+ "8.self_attn.o_proj": 14,
80
+ "9.self_attn.o_proj": 18
81
+ },
82
+ "hidden_act": "silu",
83
+ "hidden_size": 4096,
84
+ "initializer_range": 0.02,
85
+ "intermediate_size": 11008,
86
+ "kv_ignore": false,
87
+ "max_position_embeddings": 2048,
88
+ "mlp_bias": false,
89
+ "model_type": "darwinlm",
90
+ "num_attention_heads": 32,
91
+ "num_hidden_layers": 32,
92
+ "num_key_value_heads": 32,
93
+ "pretraining_tp": 1,
94
+ "rms_norm_eps": 1e-06,
95
+ "rope_scaling": null,
96
+ "rope_theta": 10000.0,
97
+ "tie_word_embeddings": false,
98
+ "torch_dtype": "float32",
99
+ "transformers_version": "4.45.0.dev0",
100
+ "use_cache": true,
101
+ "vocab_size": 32000
102
+ }
configuration_llama.py ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """LLaMA model configuration"""
21
+
22
+ from transformers import PretrainedConfig
23
+ from transformers.modeling_rope_utils import rope_config_validation
24
+
25
+
26
+ class DarwinLMConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
29
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
+ defaults will yield a similar configuration to that of the LLaMA-7B.
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32000):
38
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`LlamaModel`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 11008):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer decoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer decoder.
48
+ num_key_value_heads (`int`, *optional*):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
55
+ `num_attention_heads`.
56
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
57
+ The non-linear activation function (function or string) in the decoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
59
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
60
+ Llama 2 up to 4096, CodeLlama up to 16384.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
+ The epsilon used by the rms normalization layers.
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
67
+ relevant if `config.is_decoder=True`.
68
+ pad_token_id (`int`, *optional*):
69
+ Padding token id.
70
+ bos_token_id (`int`, *optional*, defaults to 1):
71
+ Beginning of stream token id.
72
+ eos_token_id (`int`, *optional*, defaults to 2):
73
+ End of stream token id.
74
+ pretraining_tp (`int`, *optional*, defaults to 1):
75
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
76
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
77
+ understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
78
+ results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ rope_scaling (`Dict`, *optional*):
84
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
85
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
86
+ accordingly.
87
+ Expected contents:
88
+ `rope_type` (`str`):
89
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
90
+ 'llama3'], with 'default' being the original RoPE implementation.
91
+ `factor` (`float`, *optional*):
92
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
93
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
94
+ original maximum pre-trained length.
95
+ `original_max_position_embeddings` (`int`, *optional*):
96
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
97
+ pretraining.
98
+ `attention_factor` (`float`, *optional*):
99
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
100
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
101
+ `factor` field to infer the suggested value.
102
+ `beta_fast` (`float`, *optional*):
103
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
104
+ ramp function. If unspecified, it defaults to 32.
105
+ `beta_slow` (`float`, *optional*):
106
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
107
+ ramp function. If unspecified, it defaults to 1.
108
+ `short_factor` (`List[float]`, *optional*):
109
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
110
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
111
+ size divided by the number of attention heads divided by 2
112
+ `long_factor` (`List[float]`, *optional*):
113
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
114
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
115
+ size divided by the number of attention heads divided by 2
116
+ `low_freq_factor` (`float`, *optional*):
117
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
118
+ `high_freq_factor` (`float`, *optional*):
119
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
120
+ attention_bias (`bool`, *optional*, defaults to `False`):
121
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
122
+ attention_dropout (`float`, *optional*, defaults to 0.0):
123
+ The dropout ratio for the attention probabilities.
124
+ mlp_bias (`bool`, *optional*, defaults to `False`):
125
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
126
+ head_dim (`int`, *optional*):
127
+ The attention head dimension. If None, it will default to hidden_size // num_attention_heads
128
+
129
+ ```python
130
+ >>> from transformers import LlamaModel, LlamaConfig
131
+
132
+ >>> # Initializing a LLaMA llama-7b style configuration
133
+ >>> configuration = LlamaConfig()
134
+
135
+ >>> # Initializing a model from the llama-7b style configuration
136
+ >>> model = LlamaModel(configuration)
137
+
138
+ >>> # Accessing the model configuration
139
+ >>> configuration = model.config
140
+ ```"""
141
+
142
+ model_type = "darwinlm"
143
+ keys_to_ignore_at_inference = ["past_key_values"]
144
+ # Default tensor parallel plan for base model `LlamaModel`
145
+ base_model_tp_plan = {
146
+ "layers.*.self_attn.q_proj": "colwise",
147
+ "layers.*.self_attn.k_proj": "colwise",
148
+ "layers.*.self_attn.v_proj": "colwise",
149
+ "layers.*.self_attn.o_proj": "rowwise",
150
+ "layers.*.mlp.gate_proj": "colwise",
151
+ "layers.*.mlp.up_proj": "colwise",
152
+ "layers.*.mlp.down_proj": "rowwise",
153
+ }
154
+ base_model_pp_plan = {
155
+ "embed_tokens": (["input_ids"], ["inputs_embeds"]),
156
+ "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
157
+ "norm": (["hidden_states"], ["hidden_states"]),
158
+ }
159
+
160
+ def __init__(
161
+ self,
162
+ vocab_size=32000,
163
+ hidden_size=4096,
164
+ intermediate_size=11008,
165
+ num_hidden_layers=32,
166
+ num_attention_heads=32,
167
+ num_key_value_heads=None,
168
+ hidden_act="silu",
169
+ max_position_embeddings=2048,
170
+ initializer_range=0.02,
171
+ rms_norm_eps=1e-6,
172
+ use_cache=True,
173
+ pad_token_id=None,
174
+ bos_token_id=1,
175
+ eos_token_id=2,
176
+ pretraining_tp=1,
177
+ tie_word_embeddings=False,
178
+ rope_theta=10000.0,
179
+ rope_scaling=None,
180
+ attention_bias=False,
181
+ attention_dropout=0.0,
182
+ mlp_bias=False,
183
+ head_dim=None,
184
+ kv_ignore=False,
185
+ dim_each_mlp={"0.mlp.down_proj": 11008, "1.mlp.down_proj": 11008,
186
+ "2.mlp.down_proj": 11008, "3.mlp.down_proj": 11008,
187
+ "4.mlp.down_proj": 11008, "5.mlp.down_proj": 11008,
188
+ "6.mlp.down_proj": 11008, "7.mlp.down_proj": 11008,
189
+ "8.mlp.down_proj": 11008, "9.mlp.down_proj": 11008,
190
+ "10.mlp.down_proj": 11008, "11.mlp.down_proj": 11008,
191
+ "12.mlp.down_proj": 11008, "13.mlp.down_proj": 11008,
192
+ "14.mlp.down_proj": 11008, "15.mlp.down_proj": 11008,
193
+ "16.mlp.down_proj": 11008, "17.mlp.down_proj": 11008,
194
+ "18.mlp.down_proj": 11008, "19.mlp.down_proj": 11008,
195
+ "20.mlp.down_proj": 11008, "21.mlp.down_proj": 11008,
196
+ "22.mlp.down_proj": 11008, "23.mlp.down_proj": 11008,
197
+ "24.mlp.down_proj": 11008, "25.mlp.down_proj": 11008,
198
+ "26.mlp.down_proj": 11008, "27.mlp.down_proj": 11008,
199
+ "28.mlp.down_proj": 11008, "29.mlp.down_proj": 11008,
200
+ "30.mlp.down_proj": 11008, "31.mlp.down_proj": 11008,
201
+ "32.mlp.down_proj": 11008, "33.mlp.down_proj": 11008,
202
+ "34.mlp.down_proj": 11008, "35.mlp.down_proj": 11008,
203
+ "36.mlp.down_proj": 11008, "37.mlp.down_proj": 11008,
204
+ "38.mlp.down_proj": 11008, "39.mlp.down_proj": 11008,
205
+ "40.mlp.down_proj": 11008, "41.mlp.down_proj": 11008,
206
+ "42.mlp.down_proj": 11008, "43.mlp.down_proj": 11008,
207
+ "44.mlp.down_proj": 11008, "45.mlp.down_proj": 11008,
208
+ "46.mlp.down_proj": 11008, "47.mlp.down_proj": 11008,},
209
+ heads_each_attn={"0.self_attn.o_proj": 32, "1.self_attn.o_proj": 32,
210
+ "2.self_attn.o_proj": 32, "3.self_attn.o_proj": 32,
211
+ "4.self_attn.o_proj": 32, "5.self_attn.o_proj": 32,
212
+ "6.self_attn.o_proj": 32, "7.self_attn.o_proj": 32,
213
+ "8.self_attn.o_proj": 32, "9.self_attn.o_proj": 32,
214
+ "10.self_attn.o_proj": 32, "11.self_attn.o_proj": 32,
215
+ "12.self_attn.o_proj": 32, "13.self_attn.o_proj": 32,
216
+ "14.self_attn.o_proj": 32, "15.self_attn.o_proj": 32,
217
+ "16.self_attn.o_proj": 32, "17.self_attn.o_proj": 32,
218
+ "18.self_attn.o_proj": 32, "19.self_attn.o_proj": 32,
219
+ "20.self_attn.o_proj": 32, "21.self_attn.o_proj": 32,
220
+ "22.self_attn.o_proj": 32, "23.self_attn.o_proj": 32,
221
+ "24.self_attn.o_proj": 32, "25.self_attn.o_proj": 32,
222
+ "26.self_attn.o_proj": 32, "27.self_attn.o_proj": 32,
223
+ "28.self_attn.o_proj": 32, "29.self_attn.o_proj": 32,
224
+ "30.self_attn.o_proj": 32, "31.self_attn.o_proj": 32,
225
+ "32.self_attn.o_proj": 32, "33.self_attn.o_proj": 32,
226
+ "34.self_attn.o_proj": 32, "35.self_attn.o_proj": 32,
227
+ "36.self_attn.o_proj": 32, "37.self_attn.o_proj": 32,
228
+ "38.self_attn.o_proj": 32, "39.self_attn.o_proj": 32,
229
+ "40.self_attn.o_proj": 32, "41.self_attn.o_proj": 32,
230
+ "42.self_attn.o_proj": 32, "43.self_attn.o_proj": 32,
231
+ "44.self_attn.o_proj": 32, "45.self_attn.o_proj": 32,
232
+ "46.self_attn.o_proj": 32, "47.self_attn.o_proj": 32,},
233
+ **kwargs,
234
+ ):
235
+ self.vocab_size = vocab_size
236
+ self.max_position_embeddings = max_position_embeddings
237
+ self.hidden_size = hidden_size
238
+ self.intermediate_size = intermediate_size
239
+ self.num_hidden_layers = num_hidden_layers
240
+ self.num_attention_heads = num_attention_heads
241
+ self.kv_ignore = kv_ignore
242
+ self.heads_each_attn = heads_each_attn
243
+ self.dim_each_mlp = dim_each_mlp
244
+
245
+ # for backward compatibility
246
+ if num_key_value_heads is None:
247
+ num_key_value_heads = num_attention_heads
248
+
249
+ self.num_key_value_heads = num_key_value_heads
250
+ self.hidden_act = hidden_act
251
+ self.initializer_range = initializer_range
252
+ self.rms_norm_eps = rms_norm_eps
253
+ self.pretraining_tp = pretraining_tp
254
+ self.use_cache = use_cache
255
+ self.rope_theta = rope_theta
256
+ self.rope_scaling = rope_scaling
257
+ self.attention_bias = attention_bias
258
+ self.attention_dropout = attention_dropout
259
+ self.mlp_bias = mlp_bias
260
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
261
+ # Validate the correctness of rotary position embeddings parameters
262
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
263
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
264
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
265
+ rope_config_validation(self)
266
+
267
+ super().__init__(
268
+ pad_token_id=pad_token_id,
269
+ bos_token_id=bos_token_id,
270
+ eos_token_id=eos_token_id,
271
+ tie_word_embeddings=tie_word_embeddings,
272
+ **kwargs,
273
+ )
274
+
275
+
276
+ __all__ = ["LlamaConfig"]
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.45.0.dev0"
6
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e80795aa5a295d9926fd5d7cfdc28a7a252f606cf4b23c180365acece4b74b00
3
+ size 4937134520
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41be64f02ed0e89bba7c40f51680d5998aa0e21ffb5272d3de7c77a683565169
3
+ size 4980260816
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aba111e01fa21a73ce22183caaefcf598e689861387fd5ca3dcef552a93200a4
3
+ size 1056523472
model.safetensors.index.json ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 10973888512
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00003.safetensors",
36
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
37
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00003.safetensors",
38
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
39
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
40
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
41
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
42
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
48
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
49
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
50
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
51
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
106
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
107
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
108
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
109
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
110
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
111
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
112
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
113
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
114
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
117
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
118
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
119
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
120
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
121
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
122
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
123
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
124
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
125
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
148
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
153
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
154
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
157
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
162
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
163
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
164
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
165
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
166
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
167
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
168
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
169
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00003.safetensors",
170
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
171
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
172
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
173
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
174
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
175
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
176
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
177
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
178
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00003.safetensors",
179
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
180
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
181
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
182
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
183
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
184
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
185
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
186
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
187
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00003.safetensors",
188
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
189
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
190
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
191
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
192
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
193
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
194
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
195
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
196
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
197
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
198
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
199
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
200
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
201
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
204
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
207
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
208
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
209
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
210
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
225
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
226
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
227
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
228
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
229
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
230
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
231
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
232
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
233
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
234
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
235
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
236
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
237
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
238
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
239
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
240
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
241
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
242
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.norm.weight": "model-00003-of-00003.safetensors"
270
+ }
271
+ }
modeling_llama_3.py ADDED
@@ -0,0 +1,1797 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ import math
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
31
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
32
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
33
+ from transformers.modeling_outputs import (
34
+ BaseModelOutputWithPast,
35
+ CausalLMOutputWithPast,
36
+ QuestionAnsweringModelOutput,
37
+ SequenceClassifierOutputWithPast,
38
+ TokenClassifierOutput,
39
+ )
40
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
41
+ from transformers.modeling_utils import PreTrainedModel, prune_linear_layer, find_pruneable_heads_and_indices
42
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
43
+ from transformers.utils import (
44
+ add_start_docstrings,
45
+ add_start_docstrings_to_model_forward,
46
+ is_flash_attn_greater_or_equal_2_10,
47
+ is_torchdynamo_compiling,
48
+ logging,
49
+ replace_return_docstrings,
50
+ )
51
+ from .configuration_llama import DarwinLMConfig
52
+
53
+
54
+ logger = logging.get_logger(__name__)
55
+
56
+ _CONFIG_FOR_DOC = "DarwinLMConfig"
57
+
58
+ class NoAttention(nn.Module):
59
+ def forward(
60
+ self,
61
+ hidden_states: torch.Tensor,
62
+ attention_mask: Optional[torch.Tensor] = None,
63
+ position_ids: Optional[torch.LongTensor] = None,
64
+ past_key_value = None,
65
+ output_attentions: bool = False,
66
+ use_cache: bool = False,
67
+ cache_position: Optional[torch.LongTensor] = None,
68
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
69
+ **kwargs,
70
+ ):
71
+ return (0, None, None)
72
+
73
+
74
+ class NoIntermediate(nn.Module):
75
+ def forward(self, hidden_states):
76
+ return hidden_states
77
+
78
+
79
+ class NoOutput(nn.Module):
80
+ def forward(self, hidden_states):
81
+ return 0
82
+
83
+
84
+ def _prepare_4d_causal_attention_mask_with_cache_position(
85
+ attention_mask: torch.Tensor,
86
+ sequence_length: int,
87
+ target_length: int,
88
+ dtype: torch.dtype,
89
+ device: torch.device,
90
+ min_dtype: float,
91
+ cache_position: torch.Tensor,
92
+ batch_size: int,
93
+ ):
94
+ """
95
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
96
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
97
+
98
+ Args:
99
+ attention_mask (`torch.Tensor`):
100
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
101
+ sequence_length (`int`):
102
+ The sequence length being processed.
103
+ target_length (`int`):
104
+ The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
105
+ dtype (`torch.dtype`):
106
+ The dtype to use for the 4D attention mask.
107
+ device (`torch.device`):
108
+ The device to plcae the 4D attention mask on.
109
+ min_dtype (`float`):
110
+ The minimum value representable with the dtype `dtype`.
111
+ cache_position (`torch.Tensor`):
112
+ Indices depicting the position of the input sequence tokens in the sequence.
113
+ batch_size (`torch.Tensor`):
114
+ Batch size.
115
+ """
116
+ if attention_mask is not None and attention_mask.dim() == 4:
117
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
118
+ causal_mask = attention_mask
119
+ else:
120
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
121
+ if sequence_length != 1:
122
+ causal_mask = torch.triu(causal_mask, diagonal=1)
123
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
124
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
125
+ if attention_mask is not None:
126
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
127
+ mask_length = attention_mask.shape[-1]
128
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
129
+ padding_mask = padding_mask == 0
130
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
131
+ padding_mask, min_dtype
132
+ )
133
+
134
+ return causal_mask
135
+
136
+
137
+ class LlamaRMSNorm(nn.Module):
138
+ def __init__(self, hidden_size, eps=1e-6):
139
+ """
140
+ LlamaRMSNorm is equivalent to T5LayerNorm
141
+ """
142
+ super().__init__()
143
+ self.weight = nn.Parameter(torch.ones(hidden_size))
144
+ self.variance_epsilon = eps
145
+
146
+ def forward(self, hidden_states):
147
+ input_dtype = hidden_states.dtype
148
+ hidden_states = hidden_states.to(torch.float32)
149
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
150
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
151
+ return self.weight * hidden_states.to(input_dtype)
152
+
153
+ def extra_repr(self):
154
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
155
+
156
+
157
+ ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
158
+
159
+
160
+ class LlamaRotaryEmbedding(nn.Module):
161
+ def __init__(
162
+ self,
163
+ dim=None,
164
+ max_position_embeddings=2048,
165
+ base=10000,
166
+ device=None,
167
+ scaling_factor=1.0,
168
+ rope_type="default",
169
+ config: Optional[DarwinLMConfig] = None,
170
+ ):
171
+ super().__init__()
172
+ # TODO (joao): remove the `if` below, only used for BC
173
+ self.rope_kwargs = {}
174
+ if config is None:
175
+ logger.warning_once(
176
+ "`LlamaRotaryEmbedding` can now be fully parameterized by passing the model config through the "
177
+ "`config` argument. All other arguments will be removed in v4.45"
178
+ )
179
+ self.rope_kwargs = {
180
+ "rope_type": rope_type,
181
+ "factor": scaling_factor,
182
+ "dim": dim,
183
+ "base": base,
184
+ "max_position_embeddings": max_position_embeddings,
185
+ }
186
+ self.rope_type = rope_type
187
+ self.max_seq_len_cached = max_position_embeddings
188
+ self.original_max_seq_len = max_position_embeddings
189
+ else:
190
+ # BC: "rope_type" was originally "type"
191
+ if config.rope_scaling is not None:
192
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
193
+ else:
194
+ self.rope_type = "default"
195
+ self.max_seq_len_cached = config.max_position_embeddings
196
+ self.original_max_seq_len = config.max_position_embeddings
197
+
198
+ self.config = config
199
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
200
+
201
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
202
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
203
+ self.original_inv_freq = self.inv_freq
204
+
205
+ def _dynamic_frequency_update(self, position_ids, device):
206
+ """
207
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
208
+ 1 - growing beyond the cached sequence length (allow scaling)
209
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
210
+ """
211
+ seq_len = torch.max(position_ids) + 1
212
+ if seq_len > self.max_seq_len_cached: # growth
213
+ inv_freq, self.attention_scaling = self.rope_init_fn(
214
+ self.config, device, seq_len=seq_len, **self.rope_kwargs
215
+ )
216
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
217
+ self.max_seq_len_cached = seq_len
218
+
219
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
220
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
221
+ self.max_seq_len_cached = self.original_max_seq_len
222
+
223
+ @torch.no_grad()
224
+ def forward(self, x, position_ids):
225
+ if "dynamic" in self.rope_type:
226
+ self._dynamic_frequency_update(position_ids, device=x.device)
227
+
228
+ # Core RoPE block
229
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
230
+ position_ids_expanded = position_ids[:, None, :].float()
231
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
232
+ device_type = x.device.type
233
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
234
+ with torch.autocast(device_type=device_type, enabled=False):
235
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
236
+ emb = torch.cat((freqs, freqs), dim=-1)
237
+ cos = emb.cos()
238
+ sin = emb.sin()
239
+
240
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
241
+ cos = cos * self.attention_scaling
242
+ sin = sin * self.attention_scaling
243
+
244
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
245
+
246
+
247
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
248
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
249
+
250
+ def __init__(self, *args, **kwargs):
251
+ logger.warning_once(
252
+ "`LlamaLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
253
+ "`LlamaRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
254
+ )
255
+ kwargs["rope_type"] = "linear"
256
+ super().__init__(*args, **kwargs)
257
+
258
+
259
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
260
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
261
+
262
+ def __init__(self, *args, **kwargs):
263
+ logger.warning_once(
264
+ "`LlamaDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
265
+ "`LlamaRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
266
+ "__init__)."
267
+ )
268
+ kwargs["rope_type"] = "dynamic"
269
+ super().__init__(*args, **kwargs)
270
+
271
+
272
+ def rotate_half(x):
273
+ """Rotates half the hidden dims of the input."""
274
+ x1 = x[..., : x.shape[-1] // 2]
275
+ x2 = x[..., x.shape[-1] // 2 :]
276
+ return torch.cat((-x2, x1), dim=-1)
277
+
278
+
279
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
280
+ """Applies Rotary Position Embedding to the query and key tensors.
281
+
282
+ Args:
283
+ q (`torch.Tensor`): The query tensor.
284
+ k (`torch.Tensor`): The key tensor.
285
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
286
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
287
+ position_ids (`torch.Tensor`, *optional*):
288
+ Deprecated and unused.
289
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
290
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
291
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
292
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
293
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
294
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
295
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
296
+ Returns:
297
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
298
+ """
299
+ cos = cos.unsqueeze(unsqueeze_dim)
300
+ sin = sin.unsqueeze(unsqueeze_dim)
301
+ q_embed = (q * cos) + (rotate_half(q) * sin)
302
+ k_embed = (k * cos) + (rotate_half(k) * sin)
303
+ return q_embed, k_embed
304
+
305
+
306
+ class LlamaMLP(nn.Module):
307
+ def __init__(self, config):
308
+ super().__init__()
309
+ self.config = config
310
+ self.hidden_size = config.hidden_size
311
+ self.intermediate_size = config.intermediate_size
312
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
313
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
314
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
315
+ self.act_fn = ACT2FN[config.hidden_act]
316
+
317
+ def prune_mlp(self, idx):
318
+ self.gate_proj = prune_linear_layer(self.gate_proj, idx)
319
+ self.up_proj = prune_linear_layer(self.up_proj, idx)
320
+ self.down_proj = prune_linear_layer(self.down_proj, idx, dim=1)
321
+
322
+ def forward(self, x):
323
+ if self.config.pretraining_tp > 1:
324
+ slice = self.intermediate_size // self.config.pretraining_tp
325
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
326
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
327
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
328
+
329
+ gate_proj = torch.cat(
330
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
331
+ )
332
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
333
+
334
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
335
+ down_proj = [
336
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
337
+ ]
338
+ down_proj = sum(down_proj)
339
+ else:
340
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
341
+
342
+ return down_proj
343
+
344
+
345
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int, index: Optional[torch.LongTensor] = None) -> torch.Tensor:
346
+ """
347
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
348
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
349
+ """
350
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
351
+ if n_rep == 1:
352
+ return hidden_states
353
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
354
+ hidden_states = hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
355
+ # For pruned Llama3.1, we select corresponding matrix if Q is pruned.
356
+ if index is not None:
357
+ hidden_states = hidden_states.index_select(dim=1, index=index)
358
+ return hidden_states
359
+
360
+
361
+ class LlamaAttention(nn.Module):
362
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
363
+
364
+ def __init__(self, config: DarwinLMConfig, layer_idx: Optional[int] = None):
365
+ super().__init__()
366
+ self.config = config
367
+ self.layer_idx = layer_idx
368
+ if layer_idx is None:
369
+ logger.warning_once(
370
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
371
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
372
+ "when creating this class."
373
+ )
374
+
375
+ self.attention_dropout = config.attention_dropout
376
+ self.hidden_size = config.hidden_size
377
+ self.num_heads = config.num_attention_heads
378
+ import copy
379
+ self.ori_num_heads = copy.deepcopy(self.num_heads)
380
+ self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
381
+ self.num_key_value_heads = config.num_key_value_heads
382
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
383
+ self.max_position_embeddings = config.max_position_embeddings
384
+ self.rope_theta = config.rope_theta
385
+ self.is_causal = True
386
+
387
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
388
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
389
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
390
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
391
+
392
+ # TODO (joao): remove in v4.45 (RoPE is computed in the model, not in the decoder layers)
393
+ self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
394
+ self.pruned_heads = set()
395
+ self.pruned_kv_heads = set()
396
+
397
+ # Added by Bryson for structural pruning in LLama
398
+ # if kv_ignore = True, K and V will not be pruned. Applied in Llama3.1(GQA) pruning.
399
+ def prune_heads(self, heads, kv_ignore=False):
400
+ if len(heads) == 0:
401
+ return
402
+ heads, index = find_pruneable_heads_and_indices(
403
+ heads, self.num_heads, self.head_dim, self.pruned_heads
404
+ )
405
+ # Prune linear layers
406
+ self.q_proj = prune_linear_layer(self.q_proj, index)
407
+ if not kv_ignore:
408
+ self.k_proj = prune_linear_layer(self.k_proj, index)
409
+ self.v_proj = prune_linear_layer(self.v_proj, index)
410
+ self.o_proj = prune_linear_layer(self.o_proj, index, dim=1)
411
+
412
+ # Update hyper params and store pruned heads
413
+ self.num_heads = self.num_heads - len(heads)
414
+ if not kv_ignore:
415
+ self.num_key_value_heads = self.num_key_value_heads - len(heads)
416
+ self.hidden_size = self.head_dim * self.num_heads
417
+ self.pruned_heads = self.pruned_heads.union(heads)
418
+
419
+ # Structural Pruning for GQA, prune K,V and prune the corresponding weight group in Q and O
420
+ # The input heads are the pruned index in K and V
421
+ # Note: Not Applied in DarwinLM experiments
422
+ def prune_group_heads(self, heads):
423
+ if len(heads) == 0:
424
+ return
425
+
426
+ heads, index = find_pruneable_heads_and_indices(
427
+ heads, self.num_key_value_heads, self.head_dim, self.pruned_kv_heads
428
+ )
429
+ self.k_proj = prune_linear_layer(self.k_proj, index)
430
+ self.v_proj = prune_linear_layer(self.v_proj, index)
431
+
432
+ self.num_key_value_heads = self.num_key_value_heads - len(heads)
433
+ self.pruned_kv_heads = self.pruned_heads.union(heads)
434
+
435
+ q_o_heads = []
436
+ for head in heads:
437
+ for i in range(head * self.num_key_value_groups, head * self.num_key_value_groups + self.num_key_value_groups):
438
+ q_o_heads.append(i)
439
+ # print(q_o_heads)
440
+ heads, index = find_pruneable_heads_and_indices(
441
+ q_o_heads, self.num_heads, self.head_dim, self.pruned_heads
442
+ )
443
+ # Prune linear layers
444
+ self.q_proj = prune_linear_layer(self.q_proj, index)
445
+ self.o_proj = prune_linear_layer(self.o_proj, index, dim=1)
446
+
447
+ # Update hyper params and store pruned heads
448
+ self.num_heads = self.num_heads - len(q_o_heads)
449
+ self.hidden_size = self.head_dim * self.num_heads
450
+ self.pruned_heads = self.pruned_heads.union(q_o_heads)
451
+
452
+
453
+ def forward(
454
+ self,
455
+ hidden_states: torch.Tensor,
456
+ attention_mask: Optional[torch.Tensor] = None,
457
+ position_ids: Optional[torch.LongTensor] = None,
458
+ past_key_value: Optional[Cache] = None,
459
+ output_attentions: bool = False,
460
+ use_cache: bool = False,
461
+ cache_position: Optional[torch.LongTensor] = None,
462
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
463
+ **kwargs,
464
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
465
+ bsz, q_len, _ = hidden_states.size()
466
+
467
+ if self.config.pretraining_tp > 1:
468
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
469
+ query_slices = self.q_proj.weight.split(
470
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
471
+ )
472
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
473
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
474
+
475
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
476
+ query_states = torch.cat(query_states, dim=-1)
477
+
478
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
479
+ key_states = torch.cat(key_states, dim=-1)
480
+
481
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
482
+ value_states = torch.cat(value_states, dim=-1)
483
+
484
+ else:
485
+ query_states = self.q_proj(hidden_states)
486
+ key_states = self.k_proj(hidden_states)
487
+ value_states = self.v_proj(hidden_states)
488
+
489
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
490
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
491
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
492
+
493
+ if position_embeddings is None:
494
+ logger.warning_once(
495
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
496
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
497
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
498
+ "removed and `position_embeddings` will be mandatory."
499
+ )
500
+ cos, sin = self.rotary_emb(value_states, position_ids)
501
+ else:
502
+ cos, sin = position_embeddings
503
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
504
+
505
+ if past_key_value is not None:
506
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
507
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
508
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
509
+
510
+ # if self.num_key_value_heads == self.num_heads:
511
+ # head_index_kv = None
512
+ # else:
513
+ # remaining_head_index = []
514
+ # for i in range(self.ori_num_heads):
515
+ # if i not in self.pruned_heads:
516
+ # remaining_head_index.append(i)
517
+ # head_index_kv = torch.tensor(remaining_head_index).long().to(key_states.device)
518
+ head_index_kv = None
519
+ # key_states = repeat_kv(key_states, self.num_key_value_groups, index=head_index_kv)
520
+ # value_states = repeat_kv(value_states, self.num_key_value_groups, index=head_index_kv)
521
+ if query_states.shape[1] != key_states.shape[1]:
522
+ num_q_heads = query_states.shape[1]
523
+ num_kv_heads = key_states.shape[1]
524
+ remaining_head_index = []
525
+ for i in range(self.ori_num_heads):
526
+ if i not in self.pruned_heads:
527
+ remaining_head_index.append(i)
528
+ head_index_kv = torch.tensor(remaining_head_index).long().to(key_states.device)
529
+ key_states = repeat_kv(key_states, self.num_key_value_groups, index=head_index_kv)
530
+ value_states = repeat_kv(value_states, self.num_key_value_groups, index=head_index_kv)
531
+
532
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
533
+
534
+ if attention_mask is not None: # no matter the length, we just slice it
535
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
536
+ attn_weights = attn_weights + causal_mask
537
+
538
+ # upcast attention to fp32
539
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
540
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
541
+ attn_output = torch.matmul(attn_weights, value_states)
542
+
543
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
544
+ raise ValueError(
545
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
546
+ f" {attn_output.size()}"
547
+ )
548
+
549
+ attn_output = attn_output.transpose(1, 2).contiguous()
550
+
551
+ attn_output = attn_output.reshape(bsz, q_len, -1)
552
+
553
+ if self.config.pretraining_tp > 1:
554
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
555
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
556
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
557
+ else:
558
+ attn_output = self.o_proj(attn_output)
559
+
560
+ if not output_attentions:
561
+ attn_weights = None
562
+
563
+ return attn_output, attn_weights, past_key_value
564
+
565
+
566
+ class LlamaFlashAttention2(LlamaAttention):
567
+ """
568
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
569
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
570
+ flash attention and deal with padding tokens in case the input contains any of them.
571
+ """
572
+
573
+ def __init__(self, *args, **kwargs):
574
+ super().__init__(*args, **kwargs)
575
+
576
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
577
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
578
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
579
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
580
+
581
+ def forward(
582
+ self,
583
+ hidden_states: torch.Tensor,
584
+ attention_mask: Optional[torch.LongTensor] = None,
585
+ position_ids: Optional[torch.LongTensor] = None,
586
+ past_key_value: Optional[Cache] = None,
587
+ output_attentions: bool = False,
588
+ use_cache: bool = False,
589
+ cache_position: Optional[torch.LongTensor] = None,
590
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
591
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
592
+ if isinstance(past_key_value, StaticCache):
593
+ raise ValueError(
594
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
595
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
596
+ )
597
+
598
+ output_attentions = False
599
+
600
+ bsz, q_len, _ = hidden_states.size()
601
+
602
+ query_states = self.q_proj(hidden_states)
603
+ key_states = self.k_proj(hidden_states)
604
+ value_states = self.v_proj(hidden_states)
605
+
606
+ # Flash attention requires the input to have the shape
607
+ # batch_size x seq_length x head_dim x hidden_dim
608
+ # therefore we just need to keep the original shape
609
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
610
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
611
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
612
+
613
+ if position_embeddings is None:
614
+ logger.warning_once(
615
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
616
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
617
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
618
+ "removed and `position_embeddings` will be mandatory."
619
+ )
620
+ cos, sin = self.rotary_emb(value_states, position_ids)
621
+ else:
622
+ cos, sin = position_embeddings
623
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
624
+
625
+ # if past_key_value is not None:
626
+ # # sin and cos are specific to RoPE models; cache_position needed for the static cache
627
+ # cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
628
+ # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
629
+ if query_states.shape[1] != key_states.shape[1]:
630
+ num_q_heads = query_states.shape[1]
631
+ num_kv_heads = key_states.shape[1]
632
+ remaining_head_index = []
633
+ for i in range(self.ori_num_heads):
634
+ if i not in self.pruned_heads:
635
+ remaining_head_index.append(i)
636
+ head_index_kv = torch.tensor(remaining_head_index).long().to(key_states.device)
637
+ key_states = repeat_kv(key_states, self.num_key_value_groups, index=head_index_kv)
638
+ value_states = repeat_kv(value_states, self.num_key_value_groups, index=head_index_kv)
639
+
640
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
641
+ # to be able to avoid many of these transpose/reshape/view.
642
+ query_states = query_states.transpose(1, 2)
643
+ key_states = key_states.transpose(1, 2)
644
+ value_states = value_states.transpose(1, 2)
645
+
646
+ dropout_rate = self.attention_dropout if self.training else 0.0
647
+
648
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
649
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
650
+ # cast them back in the correct dtype just to be sure everything works as expected.
651
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
652
+ # in fp32. (LlamaRMSNorm handles it correctly)
653
+
654
+ input_dtype = query_states.dtype
655
+ if input_dtype == torch.float32:
656
+ if torch.is_autocast_enabled():
657
+ target_dtype = torch.get_autocast_gpu_dtype()
658
+ # Handle the case where the model is quantized
659
+ elif hasattr(self.config, "_pre_quantization_dtype"):
660
+ target_dtype = self.config._pre_quantization_dtype
661
+ else:
662
+ target_dtype = self.q_proj.weight.dtype
663
+
664
+ logger.warning_once(
665
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
666
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
667
+ f" {target_dtype}."
668
+ )
669
+
670
+ query_states = query_states.to(target_dtype)
671
+ key_states = key_states.to(target_dtype)
672
+ value_states = value_states.to(target_dtype)
673
+
674
+ attn_output = _flash_attention_forward(
675
+ query_states,
676
+ key_states,
677
+ value_states,
678
+ attention_mask,
679
+ q_len,
680
+ position_ids=position_ids,
681
+ dropout=dropout_rate,
682
+ sliding_window=getattr(self, "sliding_window", None),
683
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
684
+ is_causal=self.is_causal,
685
+ )
686
+
687
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
688
+ attn_output = self.o_proj(attn_output)
689
+
690
+ if not output_attentions:
691
+ attn_weights = None
692
+
693
+ return attn_output, attn_weights, past_key_value
694
+
695
+
696
+ class LlamaSdpaAttention(LlamaAttention):
697
+ """
698
+ Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
699
+ `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
700
+ SDPA API.
701
+ """
702
+
703
+ # Adapted from LlamaAttention.forward
704
+ def forward(
705
+ self,
706
+ hidden_states: torch.Tensor,
707
+ attention_mask: Optional[torch.Tensor] = None,
708
+ position_ids: Optional[torch.LongTensor] = None,
709
+ past_key_value: Optional[Cache] = None,
710
+ output_attentions: bool = False,
711
+ use_cache: bool = False,
712
+ cache_position: Optional[torch.LongTensor] = None,
713
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
714
+ **kwargs,
715
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
716
+ if output_attentions:
717
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
718
+ logger.warning_once(
719
+ "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
720
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
721
+ )
722
+ return super().forward(
723
+ hidden_states=hidden_states,
724
+ attention_mask=attention_mask,
725
+ position_ids=position_ids,
726
+ past_key_value=past_key_value,
727
+ output_attentions=output_attentions,
728
+ use_cache=use_cache,
729
+ cache_position=cache_position,
730
+ position_embeddings=position_embeddings,
731
+ )
732
+
733
+ bsz, q_len, _ = hidden_states.size()
734
+
735
+ query_states = self.q_proj(hidden_states)
736
+ key_states = self.k_proj(hidden_states)
737
+ value_states = self.v_proj(hidden_states)
738
+
739
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
740
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
741
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
742
+
743
+ if position_embeddings is None:
744
+ logger.warning_once(
745
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
746
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
747
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
748
+ "removed and `position_embeddings` will be mandatory."
749
+ )
750
+ cos, sin = self.rotary_emb(value_states, position_ids)
751
+ else:
752
+ cos, sin = position_embeddings
753
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
754
+
755
+ # if past_key_value is not None:
756
+ # # sin and cos are specific to RoPE models; cache_position needed for the static cache
757
+ # cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
758
+ # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
759
+ # if self.num_key_value_heads == self.num_heads:
760
+ # head_index_kv = None
761
+ # else:
762
+ # remaining_head_index = []
763
+ # for i in range(self.ori_num_heads):
764
+ # if i not in self.pruned_heads:
765
+ # remaining_head_index.append(i)
766
+ # head_index_kv = torch.tensor(remaining_head_index).long().to(key_states.device)
767
+ # head_index_kv = None
768
+ # key_states = repeat_kv(key_states, self.num_key_value_groups, index=head_index_kv)
769
+ # value_states = repeat_kv(value_states, self.num_key_value_groups, index=head_index_kv)
770
+ if query_states.shape[1] != key_states.shape[1]:
771
+ num_q_heads = query_states.shape[1]
772
+ num_kv_heads = key_states.shape[1]
773
+ remaining_head_index = []
774
+ for i in range(self.ori_num_heads):
775
+ if i not in self.pruned_heads:
776
+ remaining_head_index.append(i)
777
+ head_index_kv = torch.tensor(remaining_head_index).long().to(key_states.device)
778
+ key_states = repeat_kv(key_states, self.num_key_value_groups, index=head_index_kv)
779
+ value_states = repeat_kv(value_states, self.num_key_value_groups, index=head_index_kv)
780
+
781
+ # if num_q_heads > num_kv_heads:
782
+ # # Repeat key and value states to cover all query heads
783
+ # repeat_factor = num_q_heads // num_kv_heads # Ceiling division
784
+ # key_states = repeat_kv(key_states, repeat_factor)[:, :num_q_heads, :, :]
785
+ # value_states = repeat_kv(value_states, repeat_factor)[:, :num_q_heads, :, :]
786
+ # else:
787
+ # # Truncate key and value states to match query heads
788
+ # key_states = key_states[:, :num_q_heads, :, :]
789
+ # value_states = value_states[:, :num_q_heads, :, :]
790
+ causal_mask = attention_mask
791
+ if attention_mask is not None:
792
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
793
+
794
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
795
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
796
+ if query_states.device.type == "cuda" and causal_mask is not None:
797
+ query_states = query_states.contiguous()
798
+ key_states = key_states.contiguous()
799
+ value_states = value_states.contiguous()
800
+
801
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
802
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
803
+ is_causal = True if causal_mask is None and q_len > 1 else False
804
+
805
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
806
+ query_states,
807
+ key_states,
808
+ value_states,
809
+ attn_mask=causal_mask,
810
+ dropout_p=self.attention_dropout if self.training else 0.0,
811
+ is_causal=is_causal,
812
+ )
813
+
814
+ attn_output = attn_output.transpose(1, 2).contiguous()
815
+ attn_output = attn_output.view(bsz, q_len, -1)
816
+
817
+ attn_output = self.o_proj(attn_output)
818
+
819
+ return attn_output, None, past_key_value
820
+
821
+
822
+ LLAMA_ATTENTION_CLASSES = {
823
+ "eager": LlamaAttention,
824
+ "flash_attention_2": LlamaFlashAttention2,
825
+ "sdpa": LlamaSdpaAttention,
826
+ }
827
+
828
+
829
+ class LlamaDecoderLayer(nn.Module):
830
+ def __init__(self, config: DarwinLMConfig, layer_idx: int):
831
+ super().__init__()
832
+ self.hidden_size = config.hidden_size
833
+ self.layer_idx = layer_idx
834
+
835
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
836
+
837
+ self.mlp = LlamaMLP(config)
838
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
839
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
840
+
841
+ def forward(
842
+ self,
843
+ hidden_states: torch.Tensor,
844
+ attention_mask: Optional[torch.Tensor] = None,
845
+ position_ids: Optional[torch.LongTensor] = None,
846
+ past_key_value: Optional[Cache] = None,
847
+ output_attentions: Optional[bool] = False,
848
+ use_cache: Optional[bool] = False,
849
+ cache_position: Optional[torch.LongTensor] = None,
850
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
851
+ **kwargs,
852
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
853
+ """
854
+ Args:
855
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
856
+ attention_mask (`torch.FloatTensor`, *optional*):
857
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
858
+ query_sequence_length, key_sequence_length)` if default attention is used.
859
+ output_attentions (`bool`, *optional*):
860
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
861
+ returned tensors for more detail.
862
+ use_cache (`bool`, *optional*):
863
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
864
+ (see `past_key_values`).
865
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
866
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
867
+ Indices depicting the position of the input sequence tokens in the sequence
868
+ position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
869
+ Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
870
+ with `head_dim` being the embedding dimension of each attention head.
871
+ kwargs (`dict`, *optional*):
872
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
873
+ into the model
874
+ """
875
+ residual = hidden_states
876
+
877
+ hidden_states = self.input_layernorm(hidden_states)
878
+
879
+ # Self Attention
880
+ # Modified for Time Profiling
881
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
882
+ hidden_states,
883
+ attention_mask,
884
+ position_ids,
885
+ past_key_value,
886
+ output_attentions,
887
+ use_cache,
888
+ cache_position,
889
+ position_embeddings,
890
+ **kwargs,
891
+ )
892
+ hidden_states = residual + hidden_states
893
+
894
+ # Fully Connected
895
+ residual = hidden_states
896
+ hidden_states = self.post_attention_layernorm(hidden_states)
897
+ hidden_states = self.mlp(hidden_states)
898
+ hidden_states = residual + hidden_states
899
+
900
+ outputs = (hidden_states,)
901
+
902
+ if output_attentions:
903
+ outputs += (self_attn_weights,)
904
+
905
+ if use_cache:
906
+ outputs += (present_key_value,)
907
+
908
+ return outputs
909
+
910
+
911
+ LLAMA_START_DOCSTRING = r"""
912
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
913
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
914
+ etc.)
915
+
916
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
917
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
918
+ and behavior.
919
+
920
+ Parameters:
921
+ config ([`DarwinLMConfig`]):
922
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
923
+ load the weights associated with the model, only the configuration. Check out the
924
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
925
+ """
926
+
927
+
928
+ @add_start_docstrings(
929
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
930
+ LLAMA_START_DOCSTRING,
931
+ )
932
+ class LlamaPreTrainedModel(PreTrainedModel):
933
+ config_class = DarwinLMConfig
934
+ base_model_prefix = "model"
935
+ supports_gradient_checkpointing = True
936
+ _no_split_modules = ["LlamaDecoderLayer"]
937
+ _skip_keys_device_placement = ["past_key_values"]
938
+ _supports_flash_attn_2 = True
939
+ _supports_sdpa = True
940
+ _supports_cache_class = True
941
+ _supports_quantized_cache = True
942
+ _supports_static_cache = True
943
+
944
+ def _init_weights(self, module):
945
+ std = self.config.initializer_range
946
+ if isinstance(module, nn.Linear):
947
+ module.weight.data.normal_(mean=0.0, std=std)
948
+ if module.bias is not None:
949
+ module.bias.data.zero_()
950
+ elif isinstance(module, nn.Embedding):
951
+ module.weight.data.normal_(mean=0.0, std=std)
952
+ if module.padding_idx is not None:
953
+ module.weight.data[module.padding_idx].zero_()
954
+
955
+
956
+ LLAMA_INPUTS_DOCSTRING = r"""
957
+ Args:
958
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
959
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
960
+ it.
961
+
962
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
963
+ [`PreTrainedTokenizer.__call__`] for details.
964
+
965
+ [What are input IDs?](../glossary#input-ids)
966
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
967
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
968
+
969
+ - 1 for tokens that are **not masked**,
970
+ - 0 for tokens that are **masked**.
971
+
972
+ [What are attention masks?](../glossary#attention-mask)
973
+
974
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
975
+ [`PreTrainedTokenizer.__call__`] for details.
976
+
977
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
978
+ `past_key_values`).
979
+
980
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
981
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
982
+ information on the default strategy.
983
+
984
+ - 1 indicates the head is **not masked**,
985
+ - 0 indicates the head is **masked**.
986
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
987
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
988
+ config.n_positions - 1]`.
989
+
990
+ [What are position IDs?](../glossary#position-ids)
991
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
992
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
993
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
994
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
995
+
996
+ Two formats are allowed:
997
+ - a [`~cache_utils.Cache`] instance;
998
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
999
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1000
+ cache format.
1001
+
1002
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1003
+ legacy cache format will be returned.
1004
+
1005
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1006
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1007
+ of shape `(batch_size, sequence_length)`.
1008
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1009
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1010
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1011
+ model's internal embedding lookup matrix.
1012
+ use_cache (`bool`, *optional*):
1013
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1014
+ `past_key_values`).
1015
+ output_attentions (`bool`, *optional*):
1016
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1017
+ tensors for more detail.
1018
+ output_hidden_states (`bool`, *optional*):
1019
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1020
+ more detail.
1021
+ return_dict (`bool`, *optional*):
1022
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1023
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
1024
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
1025
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
1026
+ the complete sequence length.
1027
+ """
1028
+
1029
+
1030
+ @add_start_docstrings(
1031
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
1032
+ LLAMA_START_DOCSTRING,
1033
+ )
1034
+ class LlamaModel(LlamaPreTrainedModel):
1035
+ """
1036
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
1037
+
1038
+ Args:
1039
+ config: DarwinLMConfig
1040
+ """
1041
+
1042
+ def __init__(self, config: DarwinLMConfig):
1043
+ super().__init__(config)
1044
+ self.padding_idx = config.pad_token_id
1045
+ self.vocab_size = config.vocab_size
1046
+
1047
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1048
+ self.layers = nn.ModuleList(
1049
+ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1050
+ )
1051
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1052
+ self.rotary_emb = LlamaRotaryEmbedding(config=config)
1053
+ self.gradient_checkpointing = False
1054
+
1055
+ # Initialize weights and apply final processing
1056
+ self.post_init()
1057
+ self.heads_each_attn = config.heads_each_attn
1058
+ self.dim_each_mlp = config.dim_each_mlp
1059
+ self.kv_ignore = config.kv_ignore
1060
+ self.prune_model(self.heads_each_attn, self.dim_each_mlp, self.kv_ignore)
1061
+
1062
+
1063
+ def prune_model(self, heads_each_attn, dim_each_mlp, kv_ignore):
1064
+ for name, heads_num in heads_each_attn.items():
1065
+ layer_idx = int(name.split(".")[0])
1066
+ attn = self.layers[layer_idx].self_attn
1067
+ if heads_num == 32:
1068
+ self.layers[layer_idx].self_attn = NoAttention()
1069
+ continue
1070
+ heads = [i for i in range(heads_num)]
1071
+ attn.prune_heads(heads, kv_ignore)
1072
+
1073
+ for name, dim in dim_each_mlp.items():
1074
+ layer_idx = int(name.split(".")[0])
1075
+ mlp = self.layers[layer_idx].mlp
1076
+ if dim == 0:
1077
+ mlp.up_proj = NoIntermediate()
1078
+ mlp.gate_proj = NoIntermediate()
1079
+ mlp.down_proj = NoOutput()
1080
+ continue
1081
+ dims = [i for i in range(dim)]
1082
+ dims = torch.tensor(dims).long()
1083
+ mlp.prune_mlp(dims)
1084
+
1085
+
1086
+
1087
+ def get_input_embeddings(self):
1088
+ return self.embed_tokens
1089
+
1090
+ def set_input_embeddings(self, value):
1091
+ self.embed_tokens = value
1092
+
1093
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1094
+ def forward(
1095
+ self,
1096
+ input_ids: torch.LongTensor = None,
1097
+ attention_mask: Optional[torch.Tensor] = None,
1098
+ position_ids: Optional[torch.LongTensor] = None,
1099
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1100
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1101
+ use_cache: Optional[bool] = None,
1102
+ output_attentions: Optional[bool] = None,
1103
+ output_hidden_states: Optional[bool] = None,
1104
+ return_dict: Optional[bool] = None,
1105
+ cache_position: Optional[torch.LongTensor] = None,
1106
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1107
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1108
+ output_hidden_states = (
1109
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1110
+ )
1111
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1112
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1113
+
1114
+ if (input_ids is None) ^ (inputs_embeds is not None):
1115
+ raise ValueError(
1116
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
1117
+ )
1118
+
1119
+ if self.gradient_checkpointing and self.training and use_cache:
1120
+ logger.warning_once(
1121
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
1122
+ )
1123
+ use_cache = False
1124
+
1125
+ if inputs_embeds is None:
1126
+ inputs_embeds = self.embed_tokens(input_ids)
1127
+
1128
+ return_legacy_cache = False
1129
+ if (
1130
+ use_cache and not isinstance(past_key_values, Cache) and not self.training
1131
+ ): # kept for BC (non `Cache` `past_key_values` inputs)
1132
+ return_legacy_cache = True
1133
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1134
+ logger.warning_once(
1135
+ "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
1136
+ "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/internal/generation_utils#transformers.Cache)"
1137
+ )
1138
+
1139
+ if cache_position is None:
1140
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1141
+ cache_position = torch.arange(
1142
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
1143
+ )
1144
+ if position_ids is None:
1145
+ position_ids = cache_position.unsqueeze(0)
1146
+
1147
+ causal_mask = self._update_causal_mask(
1148
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
1149
+ )
1150
+ hidden_states = inputs_embeds
1151
+
1152
+ # create position embeddings to be shared across the decoder layers
1153
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
1154
+
1155
+ # decoder layers
1156
+ all_hidden_states = () if output_hidden_states else None
1157
+ all_self_attns = () if output_attentions else None
1158
+ next_decoder_cache = None
1159
+
1160
+ for i, decoder_layer in enumerate(self.layers):
1161
+ if output_hidden_states:
1162
+ all_hidden_states += (hidden_states,)
1163
+
1164
+ if self.gradient_checkpointing and self.training:
1165
+ layer_outputs = self._gradient_checkpointing_func(
1166
+ decoder_layer.__call__,
1167
+ hidden_states,
1168
+ causal_mask,
1169
+ position_ids,
1170
+ past_key_values,
1171
+ output_attentions,
1172
+ use_cache,
1173
+ cache_position,
1174
+ position_embeddings,
1175
+ )
1176
+ else:
1177
+ layer_outputs = decoder_layer(
1178
+ hidden_states,
1179
+ causal_mask,
1180
+ position_ids,
1181
+ past_key_values,
1182
+ output_attentions,
1183
+ use_cache,
1184
+ cache_position,
1185
+ position_embeddings,
1186
+ )
1187
+
1188
+ hidden_states = layer_outputs[0]
1189
+
1190
+ if use_cache:
1191
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1192
+
1193
+ if output_attentions:
1194
+ all_self_attns += (layer_outputs[1],)
1195
+
1196
+ hidden_states = self.norm(hidden_states)
1197
+
1198
+ # add hidden states from the last decoder layer
1199
+ if output_hidden_states:
1200
+ all_hidden_states += (hidden_states,)
1201
+
1202
+ next_cache = next_decoder_cache if use_cache else None
1203
+ return_legacy_cache = False
1204
+ if return_legacy_cache:
1205
+ next_cache = next_cache.to_legacy_cache()
1206
+
1207
+ if not return_dict:
1208
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1209
+ return BaseModelOutputWithPast(
1210
+ last_hidden_state=hidden_states,
1211
+ past_key_values=next_cache,
1212
+ hidden_states=all_hidden_states,
1213
+ attentions=all_self_attns,
1214
+ )
1215
+
1216
+ def _update_causal_mask(
1217
+ self,
1218
+ attention_mask: torch.Tensor,
1219
+ input_tensor: torch.Tensor,
1220
+ cache_position: torch.Tensor,
1221
+ past_key_values: Cache,
1222
+ output_attentions: bool,
1223
+ ):
1224
+ if self.config._attn_implementation == "flash_attention_2":
1225
+ if attention_mask is not None and 0.0 in attention_mask:
1226
+ return attention_mask
1227
+ return None
1228
+
1229
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1230
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1231
+ # to infer the attention mask.
1232
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1233
+ using_static_cache = isinstance(past_key_values, StaticCache)
1234
+
1235
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1236
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1237
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1238
+ attention_mask,
1239
+ inputs_embeds=input_tensor,
1240
+ past_key_values_length=past_seen_tokens,
1241
+ is_training=self.training,
1242
+ ):
1243
+ return None
1244
+
1245
+ dtype, device = input_tensor.dtype, input_tensor.device
1246
+ min_dtype = torch.finfo(dtype).min
1247
+ sequence_length = input_tensor.shape[1]
1248
+ if using_static_cache:
1249
+ target_length = past_key_values.get_max_length()
1250
+ else:
1251
+ target_length = (
1252
+ attention_mask.shape[-1]
1253
+ if isinstance(attention_mask, torch.Tensor)
1254
+ else past_seen_tokens + sequence_length + 1
1255
+ )
1256
+
1257
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
1258
+ causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1259
+ attention_mask,
1260
+ sequence_length=sequence_length,
1261
+ target_length=target_length,
1262
+ dtype=dtype,
1263
+ device=device,
1264
+ min_dtype=min_dtype,
1265
+ cache_position=cache_position,
1266
+ batch_size=input_tensor.shape[0],
1267
+ )
1268
+
1269
+ if (
1270
+ self.config._attn_implementation == "sdpa"
1271
+ and attention_mask is not None
1272
+ and attention_mask.device.type == "cuda"
1273
+ and not output_attentions
1274
+ ):
1275
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1276
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1277
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1278
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1279
+
1280
+ return causal_mask
1281
+
1282
+
1283
+ class LlamaForCausalLM(LlamaPreTrainedModel):
1284
+ _tied_weights_keys = ["lm_head.weight"]
1285
+
1286
+ def __init__(self, config):
1287
+ super().__init__(config)
1288
+ self.model = LlamaModel(config)
1289
+ self.vocab_size = config.vocab_size
1290
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1291
+
1292
+ # Initialize weights and apply final processing
1293
+ self.post_init()
1294
+
1295
+ def get_input_embeddings(self):
1296
+ return self.model.embed_tokens
1297
+
1298
+ def set_input_embeddings(self, value):
1299
+ self.model.embed_tokens = value
1300
+
1301
+ def get_output_embeddings(self):
1302
+ return self.lm_head
1303
+
1304
+ def set_output_embeddings(self, new_embeddings):
1305
+ self.lm_head = new_embeddings
1306
+
1307
+ def set_decoder(self, decoder):
1308
+ self.model = decoder
1309
+
1310
+ def get_decoder(self):
1311
+ return self.model
1312
+
1313
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1314
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1315
+ def forward(
1316
+ self,
1317
+ input_ids: torch.LongTensor = None,
1318
+ attention_mask: Optional[torch.Tensor] = None,
1319
+ position_ids: Optional[torch.LongTensor] = None,
1320
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1321
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1322
+ labels: Optional[torch.LongTensor] = None,
1323
+ use_cache: Optional[bool] = None,
1324
+ output_attentions: Optional[bool] = None,
1325
+ output_hidden_states: Optional[bool] = None,
1326
+ return_dict: Optional[bool] = None,
1327
+ cache_position: Optional[torch.LongTensor] = None,
1328
+ num_logits_to_keep: int = 0,
1329
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1330
+ r"""
1331
+ Args:
1332
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1333
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1334
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1335
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1336
+
1337
+ num_logits_to_keep (`int`, *optional*):
1338
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
1339
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
1340
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
1341
+
1342
+ Returns:
1343
+
1344
+ Example:
1345
+
1346
+ ```python
1347
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1348
+
1349
+ >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
1350
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
1351
+
1352
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1353
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1354
+
1355
+ >>> # Generate
1356
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1357
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1358
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1359
+ ```"""
1360
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1361
+ output_hidden_states = (
1362
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1363
+ )
1364
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1365
+
1366
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1367
+ outputs = self.model(
1368
+ input_ids=input_ids,
1369
+ attention_mask=attention_mask,
1370
+ position_ids=position_ids,
1371
+ past_key_values=past_key_values,
1372
+ inputs_embeds=inputs_embeds,
1373
+ use_cache=use_cache,
1374
+ output_attentions=output_attentions,
1375
+ output_hidden_states=output_hidden_states,
1376
+ return_dict=return_dict,
1377
+ cache_position=cache_position,
1378
+ )
1379
+
1380
+ hidden_states = outputs[0]
1381
+ if self.config.pretraining_tp > 1:
1382
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1383
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1384
+ logits = torch.cat(logits, dim=-1)
1385
+ else:
1386
+ if labels is None and not is_torchdynamo_compiling():
1387
+ logger.warning_once(
1388
+ "Starting from v4.46, the `logits` model output will have the same type as the model (except at train time, where it will always be FP32)"
1389
+ )
1390
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
1391
+ # TODO: remove the float() operation in v4.46
1392
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]).float()
1393
+
1394
+ loss = None
1395
+ if labels is not None:
1396
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
1397
+ logits = logits.float()
1398
+ # Shift so that tokens < n predict n
1399
+ shift_logits = logits[..., :-1, :].contiguous()
1400
+ shift_labels = labels[..., 1:].contiguous()
1401
+ # Flatten the tokens
1402
+ loss_fct = CrossEntropyLoss()
1403
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1404
+ shift_labels = shift_labels.view(-1)
1405
+ # Enable model parallelism
1406
+ shift_labels = shift_labels.to(shift_logits.device)
1407
+ loss = loss_fct(shift_logits, shift_labels)
1408
+
1409
+ if not return_dict:
1410
+ output = (logits,) + outputs[1:]
1411
+ return (loss,) + output if loss is not None else output
1412
+
1413
+ return CausalLMOutputWithPast(
1414
+ loss=loss,
1415
+ logits=logits,
1416
+ past_key_values=outputs.past_key_values,
1417
+ hidden_states=outputs.hidden_states,
1418
+ attentions=outputs.attentions,
1419
+ )
1420
+
1421
+ def prepare_inputs_for_generation(
1422
+ self,
1423
+ input_ids,
1424
+ past_key_values=None,
1425
+ attention_mask=None,
1426
+ inputs_embeds=None,
1427
+ cache_position=None,
1428
+ position_ids=None,
1429
+ use_cache=True,
1430
+ num_logits_to_keep=0,
1431
+ **kwargs,
1432
+ ):
1433
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
1434
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
1435
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
1436
+ if past_key_values is not None:
1437
+ if inputs_embeds is not None: # Exception 1
1438
+ input_ids = input_ids[:, -cache_position.shape[0] :]
1439
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
1440
+ input_ids = input_ids[:, cache_position]
1441
+
1442
+ if attention_mask is not None and position_ids is None:
1443
+ # create position_ids on the fly for batch generation
1444
+ position_ids = attention_mask.long().cumsum(-1) - 1
1445
+ position_ids.masked_fill_(attention_mask == 0, 1)
1446
+ if past_key_values:
1447
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1448
+
1449
+ # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
1450
+ position_ids = position_ids.clone(memory_format=torch.contiguous_format)
1451
+
1452
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1453
+ if inputs_embeds is not None and cache_position[0] == 0:
1454
+ model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
1455
+ else:
1456
+ # The clone here is for the same reason as for `position_ids`.
1457
+ model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
1458
+
1459
+ if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
1460
+ if model_inputs["inputs_embeds"] is not None:
1461
+ batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
1462
+ device = model_inputs["inputs_embeds"].device
1463
+ else:
1464
+ batch_size, sequence_length = model_inputs["input_ids"].shape
1465
+ device = model_inputs["input_ids"].device
1466
+
1467
+ dtype = self.lm_head.weight.dtype
1468
+ min_dtype = torch.finfo(dtype).min
1469
+
1470
+ attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1471
+ attention_mask,
1472
+ sequence_length=sequence_length,
1473
+ target_length=past_key_values.get_max_length(),
1474
+ dtype=dtype,
1475
+ device=device,
1476
+ min_dtype=min_dtype,
1477
+ cache_position=cache_position,
1478
+ batch_size=batch_size,
1479
+ )
1480
+
1481
+ model_inputs.update(
1482
+ {
1483
+ "position_ids": position_ids,
1484
+ "cache_position": cache_position,
1485
+ "past_key_values": past_key_values,
1486
+ "use_cache": use_cache,
1487
+ "attention_mask": attention_mask,
1488
+ "num_logits_to_keep": num_logits_to_keep,
1489
+ }
1490
+ )
1491
+ return model_inputs
1492
+
1493
+
1494
+ @add_start_docstrings(
1495
+ """
1496
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
1497
+
1498
+ [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1499
+ (e.g. GPT-2) do.
1500
+
1501
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1502
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1503
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1504
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1505
+ each row of the batch).
1506
+ """,
1507
+ LLAMA_START_DOCSTRING,
1508
+ )
1509
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
1510
+ def __init__(self, config):
1511
+ super().__init__(config)
1512
+ self.num_labels = config.num_labels
1513
+ self.model = LlamaModel(config)
1514
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1515
+
1516
+ # Initialize weights and apply final processing
1517
+ self.post_init()
1518
+
1519
+ def get_input_embeddings(self):
1520
+ return self.model.embed_tokens
1521
+
1522
+ def set_input_embeddings(self, value):
1523
+ self.model.embed_tokens = value
1524
+
1525
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1526
+ def forward(
1527
+ self,
1528
+ input_ids: Optional[torch.LongTensor] = None,
1529
+ attention_mask: Optional[torch.Tensor] = None,
1530
+ position_ids: Optional[torch.LongTensor] = None,
1531
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1532
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1533
+ labels: Optional[torch.LongTensor] = None,
1534
+ use_cache: Optional[bool] = None,
1535
+ output_attentions: Optional[bool] = None,
1536
+ output_hidden_states: Optional[bool] = None,
1537
+ return_dict: Optional[bool] = None,
1538
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1539
+ r"""
1540
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1541
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1542
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1543
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1544
+ """
1545
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1546
+
1547
+ transformer_outputs = self.model(
1548
+ input_ids,
1549
+ attention_mask=attention_mask,
1550
+ position_ids=position_ids,
1551
+ past_key_values=past_key_values,
1552
+ inputs_embeds=inputs_embeds,
1553
+ use_cache=use_cache,
1554
+ output_attentions=output_attentions,
1555
+ output_hidden_states=output_hidden_states,
1556
+ return_dict=return_dict,
1557
+ )
1558
+ hidden_states = transformer_outputs[0]
1559
+ logits = self.score(hidden_states)
1560
+
1561
+ if input_ids is not None:
1562
+ batch_size = input_ids.shape[0]
1563
+ else:
1564
+ batch_size = inputs_embeds.shape[0]
1565
+
1566
+ if self.config.pad_token_id is None and batch_size != 1:
1567
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1568
+ if self.config.pad_token_id is None:
1569
+ sequence_lengths = -1
1570
+ else:
1571
+ if input_ids is not None:
1572
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1573
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1574
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1575
+ sequence_lengths = sequence_lengths.to(logits.device)
1576
+ else:
1577
+ sequence_lengths = -1
1578
+
1579
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1580
+
1581
+ loss = None
1582
+ if labels is not None:
1583
+ labels = labels.to(logits.device)
1584
+ if self.config.problem_type is None:
1585
+ if self.num_labels == 1:
1586
+ self.config.problem_type = "regression"
1587
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1588
+ self.config.problem_type = "single_label_classification"
1589
+ else:
1590
+ self.config.problem_type = "multi_label_classification"
1591
+
1592
+ if self.config.problem_type == "regression":
1593
+ loss_fct = MSELoss()
1594
+ if self.num_labels == 1:
1595
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1596
+ else:
1597
+ loss = loss_fct(pooled_logits, labels)
1598
+ elif self.config.problem_type == "single_label_classification":
1599
+ loss_fct = CrossEntropyLoss()
1600
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1601
+ elif self.config.problem_type == "multi_label_classification":
1602
+ loss_fct = BCEWithLogitsLoss()
1603
+ loss = loss_fct(pooled_logits, labels)
1604
+ if not return_dict:
1605
+ output = (pooled_logits,) + transformer_outputs[1:]
1606
+ return ((loss,) + output) if loss is not None else output
1607
+
1608
+ return SequenceClassifierOutputWithPast(
1609
+ loss=loss,
1610
+ logits=pooled_logits,
1611
+ past_key_values=transformer_outputs.past_key_values,
1612
+ hidden_states=transformer_outputs.hidden_states,
1613
+ attentions=transformer_outputs.attentions,
1614
+ )
1615
+
1616
+
1617
+ @add_start_docstrings(
1618
+ """
1619
+ The Llama Model transformer with a span classification head on top for extractive question-answering tasks like
1620
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1621
+ """,
1622
+ LLAMA_START_DOCSTRING,
1623
+ )
1624
+ class LlamaForQuestionAnswering(LlamaPreTrainedModel):
1625
+ base_model_prefix = "transformer"
1626
+
1627
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Llama
1628
+ def __init__(self, config):
1629
+ super().__init__(config)
1630
+ self.transformer = LlamaModel(config)
1631
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1632
+
1633
+ # Initialize weights and apply final processing
1634
+ self.post_init()
1635
+
1636
+ def get_input_embeddings(self):
1637
+ return self.transformer.embed_tokens
1638
+
1639
+ def set_input_embeddings(self, value):
1640
+ self.transformer.embed_tokens = value
1641
+
1642
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1643
+ def forward(
1644
+ self,
1645
+ input_ids: Optional[torch.LongTensor] = None,
1646
+ attention_mask: Optional[torch.FloatTensor] = None,
1647
+ position_ids: Optional[torch.LongTensor] = None,
1648
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1649
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1650
+ start_positions: Optional[torch.LongTensor] = None,
1651
+ end_positions: Optional[torch.LongTensor] = None,
1652
+ output_attentions: Optional[bool] = None,
1653
+ output_hidden_states: Optional[bool] = None,
1654
+ return_dict: Optional[bool] = None,
1655
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1656
+ r"""
1657
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1658
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1659
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1660
+ are not taken into account for computing the loss.
1661
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1662
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1663
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1664
+ are not taken into account for computing the loss.
1665
+ """
1666
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1667
+
1668
+ outputs = self.transformer(
1669
+ input_ids,
1670
+ attention_mask=attention_mask,
1671
+ position_ids=position_ids,
1672
+ past_key_values=past_key_values,
1673
+ inputs_embeds=inputs_embeds,
1674
+ output_attentions=output_attentions,
1675
+ output_hidden_states=output_hidden_states,
1676
+ return_dict=return_dict,
1677
+ )
1678
+
1679
+ sequence_output = outputs[0]
1680
+
1681
+ logits = self.qa_outputs(sequence_output)
1682
+ start_logits, end_logits = logits.split(1, dim=-1)
1683
+ start_logits = start_logits.squeeze(-1).contiguous()
1684
+ end_logits = end_logits.squeeze(-1).contiguous()
1685
+
1686
+ total_loss = None
1687
+ if start_positions is not None and end_positions is not None:
1688
+ # If we are on multi-GPU, split add a dimension
1689
+ if len(start_positions.size()) > 1:
1690
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1691
+ if len(end_positions.size()) > 1:
1692
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1693
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1694
+ ignored_index = start_logits.size(1)
1695
+ start_positions = start_positions.clamp(0, ignored_index)
1696
+ end_positions = end_positions.clamp(0, ignored_index)
1697
+
1698
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1699
+ start_loss = loss_fct(start_logits, start_positions)
1700
+ end_loss = loss_fct(end_logits, end_positions)
1701
+ total_loss = (start_loss + end_loss) / 2
1702
+
1703
+ if not return_dict:
1704
+ output = (start_logits, end_logits) + outputs[2:]
1705
+ return ((total_loss,) + output) if total_loss is not None else output
1706
+
1707
+ return QuestionAnsweringModelOutput(
1708
+ loss=total_loss,
1709
+ start_logits=start_logits,
1710
+ end_logits=end_logits,
1711
+ hidden_states=outputs.hidden_states,
1712
+ attentions=outputs.attentions,
1713
+ )
1714
+
1715
+
1716
+ @add_start_docstrings(
1717
+ """
1718
+ The Llama Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1719
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1720
+ """,
1721
+ LLAMA_START_DOCSTRING,
1722
+ )
1723
+ class LlamaForTokenClassification(LlamaPreTrainedModel):
1724
+ def __init__(self, config):
1725
+ super().__init__(config)
1726
+ self.num_labels = config.num_labels
1727
+ self.model = LlamaModel(config)
1728
+ if getattr(config, "classifier_dropout", None) is not None:
1729
+ classifier_dropout = config.classifier_dropout
1730
+ elif getattr(config, "hidden_dropout", None) is not None:
1731
+ classifier_dropout = config.hidden_dropout
1732
+ else:
1733
+ classifier_dropout = 0.1
1734
+ self.dropout = nn.Dropout(classifier_dropout)
1735
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1736
+
1737
+ # Initialize weights and apply final processing
1738
+ self.post_init()
1739
+
1740
+ def get_input_embeddings(self):
1741
+ return self.model.embed_tokens
1742
+
1743
+ def set_input_embeddings(self, value):
1744
+ self.model.embed_tokens = value
1745
+
1746
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1747
+ def forward(
1748
+ self,
1749
+ input_ids: Optional[torch.LongTensor] = None,
1750
+ attention_mask: Optional[torch.Tensor] = None,
1751
+ position_ids: Optional[torch.LongTensor] = None,
1752
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1753
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1754
+ labels: Optional[torch.LongTensor] = None,
1755
+ use_cache: Optional[bool] = None,
1756
+ output_attentions: Optional[bool] = None,
1757
+ output_hidden_states: Optional[bool] = None,
1758
+ return_dict: Optional[bool] = None,
1759
+ ) -> Union[Tuple, TokenClassifierOutput]:
1760
+ r"""
1761
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1762
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1763
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1764
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1765
+ """
1766
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1767
+
1768
+ outputs = self.model(
1769
+ input_ids,
1770
+ attention_mask=attention_mask,
1771
+ position_ids=position_ids,
1772
+ past_key_values=past_key_values,
1773
+ inputs_embeds=inputs_embeds,
1774
+ use_cache=use_cache,
1775
+ output_attentions=output_attentions,
1776
+ output_hidden_states=output_hidden_states,
1777
+ return_dict=return_dict,
1778
+ )
1779
+ sequence_output = outputs[0]
1780
+ sequence_output = self.dropout(sequence_output)
1781
+ logits = self.score(sequence_output)
1782
+
1783
+ loss = None
1784
+ if labels is not None:
1785
+ loss_fct = CrossEntropyLoss()
1786
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1787
+
1788
+ if not return_dict:
1789
+ output = (logits,) + outputs[2:]
1790
+ return ((loss,) + output) if loss is not None else output
1791
+
1792
+ return TokenClassifierOutput(
1793
+ loss=loss,
1794
+ logits=logits,
1795
+ hidden_states=outputs.hidden_states,
1796
+ attentions=outputs.attentions,
1797
+ )