--- library_name: peft license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: emotion-model11_2 results: [] --- # emotion-model11_2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0629 - Accuracy: 0.5583 - F1: 0.4935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 41 | 1.3051 | 0.4356 | 0.2643 | | 1.3528 | 2.0 | 82 | 1.2167 | 0.4540 | 0.3105 | | 1.277 | 3.0 | 123 | 1.1665 | 0.4908 | 0.4415 | | 1.1653 | 4.0 | 164 | 1.0812 | 0.5276 | 0.4454 | | 1.1339 | 5.0 | 205 | 1.1394 | 0.5092 | 0.4484 | | 1.1339 | 6.0 | 246 | 1.1019 | 0.5153 | 0.4553 | | 1.1081 | 7.0 | 287 | 1.0528 | 0.5399 | 0.4727 | | 1.0794 | 8.0 | 328 | 1.0629 | 0.5583 | 0.4935 | | 1.0727 | 9.0 | 369 | 1.0426 | 0.5399 | 0.4737 | | 1.0608 | 10.0 | 410 | 1.0567 | 0.5399 | 0.4856 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1