SauravDevon commited on
Commit
7c306ad
·
verified ·
1 Parent(s): 28f14dc

updated LunarLanding using PPO

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 208.87 +/- 55.67
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 305.62 +/- 9.31
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x791faa37a2a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x791faa37a340>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x791faa37a3e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x791faa37a480>", "_build": "<function ActorCriticPolicy._build at 0x791faa37a520>", "forward": "<function ActorCriticPolicy.forward at 0x791faa37a5c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x791faa37a660>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x791faa37a700>", "_predict": "<function ActorCriticPolicy._predict at 0x791faa37a7a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x791faa37a840>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x791faa37a8e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x791faa37a980>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x791fab53d880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738222917214817427, "learning_rate": 0.0002, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA03jD16SAA/c8JmPW7plr4Yewc9l7KqPAAAAAAAAAAAGtk2vo8tc7wvFii8nTGEuvJi1T0ivFU7AACAPwAAgD+aImk+fdTEPoBLCrxUDXC+A4BJPcUNybwAAAAAAAAAADPHZL0ucxE/gxjvOwSyYL7V0VK9sgwnvQAAAAAAAAAAZjUHPsNJQLxqHas84oKVPFatRT0ygXu9AACAPwAAgD9Kkam+yyViPybWGb0rCoy+WoENvjN8VD0AAAAAAAAAAECwzj0DrTk/dkk4PSlqp76BPJU8UJk2PQAAAAAAAAAAAK0kPeG4qrqWH5W0BHdnrwD2PTpu4XMzAACAPwAAgD9TK0M+jLTHPi6HS716OVK+s/VMu73TFjwAAAAAAAAAAABph72YGT0/QtNWvR4Fxr7jkT6955rGvAAAAAAAAAAATUsOvrSpiz+ic3G+2QXUvtja3r31bo89AAAAAAAAAADNn6s819KoPzpelT6m6Ba/TdwXvFiRmrsAAAAAAAAAAGYjib6T4DU//qiKvbwRwr5Zt7e9bvO8PQAAAAAAAAAAs/yPPcPxdrqC6ko2CTtssM06w7oYA2+1AACAPwAAgD+YRoi+gtN4P2xAub7XR9++fsiNvqiZmD0AAAAAAAAAAC3oVD7SKoU/2Pl/PiP7jr6V+AU+YUqIvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCAkFB6a9bqMAWyUS92MAXSUR0C0n9WBFuvVdX2UKGgGR0BwxM8eS0SiaAdNggFoCEdAtJ/8NPP9k3V9lChoBkfAMHclkYoAn2gHS9toCEdAtKAg3YL9dnV9lChoBkdAbuzzlLeyiWgHTSIBaAhHQLSgZfyPMjh1fZQoaAZHQG7iRQzk6tFoB01oAWgIR0C0oHTYqXnhdX2UKGgGR0Bs4hK3/givaAdNqAFoCEdAtKEmgZjx1HV9lChoBkdAcRrn6l+Ey2gHTa0BaAhHQLShlZCv5gx1fZQoaAZHQDIky9EkSmJoB00BAWgIR0C0oav/aQFLdX2UKGgGR0Bv7rjghr31aAdNYQFoCEdAtKHIrbxmTXV9lChoBkdAbwfw0fozN2gHTU4BaAhHQLSnEnnMdLh1fZQoaAZHQHDWvOMVDa5oB02vAWgIR0C0pznFYMfBdX2UKGgGR0BwWC9oN/e+aAdNlQFoCEdAtKejb1yvLXV9lChoBkdAb+7J7sv7FmgHTUEBaAhHQLSnu8lXzUZ1fZQoaAZHQHBZRS1maphoB005AWgIR0C0p+54SpR5dX2UKGgGR0BsN0+PikwfaAdNQQFoCEdAtKgu8Hv+fnV9lChoBkdAcaNWrfcesGgHTS8BaAhHQLSoMYU34sV1fZQoaAZHQG6Ms9SuQp5oB01MAWgIR0C0qP18PWhAdX2UKGgGR0BuZ6v/zasZaAdNYgFoCEdAtKkh9LHuJHV9lChoBkdAcrQFWXC0nmgHTRkBaAhHQLSp3hJAdGR1fZQoaAZHQGxa5dv863loB00sAWgIR0C0qfAm/nGLdX2UKGgGR0ByXjj/+85CaAdNjgFoCEdAtKpksUZeiXV9lChoBkdAcUGv2oNutWgHTUkBaAhHQLSqj2Dxsl91fZQoaAZHQDKSsr/bTMJoB00RAWgIR0C0qrlBhQWOdX2UKGgGR0BtRF4cFQl9aAdNaQFoCEdAtKsSgxrSE3V9lChoBkdAayD60pmVaGgHTU0BaAhHQLSrIhLGrCF1fZQoaAZHQG2px2B8QZpoB01XAWgIR0C0qydZV4ordX2UKGgGR0Bvmpu2qkuZaAdNJQFoCEdAtKs4PwuuinV9lChoBkdAbpOjHn2ZiWgHTVMBaAhHQLSrn5Jsfq51fZQoaAZHQG23QevIOpdoB00kAWgIR0C0q9KBI4EPdX2UKGgGR0BvXTuc+aBqaAdNKQFoCEdAtKv9j8UEgXV9lChoBkdAcCoK77Kq42gHTWUCaAhHQLSszacI7eV1fZQoaAZHQG6RCUHIIWxoB01HAWgIR0C0rQgQ176YdX2UKGgGR0Bu4kZFXq7iaAdNHwFoCEdAtK08RZlnRXV9lChoBkdAcFvKwpvxY2gHTWsBaAhHQLStUHJcPe51fZQoaAZHQF0oJpFkQPJoB03oA2gIR0C0rXtpudf+dX2UKGgGR0BvDTZg5R0maAdNVwFoCEdAtK2jefqX4XV9lChoBkdAWpPj4pMHr2gHTegDaAhHQLStqmSQo1F1fZQoaAZHQG3OUnogV45oB00+AWgIR0C0rbD3dsSCdX2UKGgGR0BfBXQMQVbiaAdN6ANoCEdAtK4Ezl90BHV9lChoBkdAcXVnk1dgOWgHTU8BaAhHQLSuF/Ue+251fZQoaAZHQGziRMN+b3JoB01KAWgIR0C0rh5EDyOJdX2UKGgGR0Bur6xPfsNUaAdNYAFoCEdAtK5EvWYnfHV9lChoBkdAcQDdkauOj2gHTWYBaAhHQLSuYPTXrdF1fZQoaAZHQHFYIJiRW91oB01NAWgIR0C0roMKb8WLdX2UKGgGR0Br1/6XSjQBaAdNOgFoCEdAtK6JrylN13V9lChoBkdAbTlcFhXr+2gHTUQBaAhHQLSuvZ9uxbB1fZQoaAZHQHB+JOnEVFhoB00iAWgIR0C0r1dytFKDdX2UKGgGR0BwzilBQemvaAdNJgFoCEdAtK+P0h/y5XV9lChoBkdAaTPhjOLR8mgHTXcBaAhHQLSv6osZpBZ1fZQoaAZHQG/dQD3dsSFoB00yAWgIR0C0sB2MCLdfdX2UKGgGR0BxwQbVBlcyaAdNMgFoCEdAtLAoFJQLu3V9lChoBkdAb+FlCCz1LGgHTUQBaAhHQLSwbQUHpr11fZQoaAZHQHEsjbJwKjVoB00oAWgIR0C0sJaKUFB6dX2UKGgGR0BwcOuSwGGEaAdNQQFoCEdAtLYFhz/6wnV9lChoBkdAbhcm51/2CmgHTT8BaAhHQLS2B90zTF51fZQoaAZHQHB69JJ5E+hoB00sAWgIR0C0tgoomXw9dX2UKGgGR0BwsKrdWQwLaAdNKAFoCEdAtLYf0wrUb3V9lChoBkdARZ1XtBv732gHTR8BaAhHQLS2NC7sfJV1fZQoaAZHQG30KHGjsUtoB02qAWgIR0C0tkNutOmBdX2UKGgGR0BtEH/echC/aAdNQQFoCEdAtLZzslb/wXV9lChoBkdAcKvuXeFcp2gHTW8BaAhHQLS2/I7Njb11fZQoaAZHQEST/ViF0xNoB0vvaAhHQLS3FtTDO1R1fZQoaAZHQHEz43aSLZVoB01VAmgIR0C0t13kDIRzdX2UKGgGR0Bv2x8jRlYmaAdNHQFoCEdAtLej8l5WzXV9lChoBkdAbpOoOx0MgGgHTYABaAhHQLS4E0163RZ1fZQoaAZHQG9QG0u14PhoB003AWgIR0C0uB3XZoPDdX2UKGgGR0BrUyYG+sYEaAdNVAFoCEdAtLgp84Pwu3V9lChoBkdAb+madc0Lt2gHTSEBaAhHQLS4knDBMzx1fZQoaAZHQHGXfikwevJoB006AWgIR0C0uJnaFmFrdX2UKGgGR0BtNPOfNA1OaAdNYgFoCEdAtLijbM5fdHV9lChoBkdAcCdgw482aWgHTSoBaAhHQLS4ua6BiCt1fZQoaAZHQG36QDNhVlxoB01LAWgIR0C0uLwf+0gKdX2UKGgGR0BwS2fQKKHgaAdNUAFoCEdAtLjcDcM3InV9lChoBkdAb2ursByS3mgHTSUBaAhHQLS5ogzxgAp1fZQoaAZHQHBQxvJiiItoB02EAWgIR0C0ua1abF0gdX2UKGgGR0BxS/idat9yaAdNCgFoCEdAtLmzneSB9XV9lChoBkdAcj91+y7f52gHTXcBaAhHQLS6OwFC9h91fZQoaAZHQGps/OdGy5ZoB00UAmgIR0C0umlQyhzvdX2UKGgGR0ByBSptJnQIaAdNXQFoCEdAtLq8e+23KHV9lChoBkdAOxxSxZ+x4mgHTQABaAhHQLS6xCtA9mp1fZQoaAZHQHEnH18LKFJoB01IAWgIR0C0uwSeqaPTdX2UKGgGR0Bx+PGrCFbnaAdNWgFoCEdAtLsbYe1a4nV9lChoBkdAcMZeRPoFFGgHTS4BaAhHQLS7WBAOav11fZQoaAZHQHEc3/1g6U9oB012AWgIR0C0u2MSsbNsdX2UKGgGR0BxNLkwN9YwaAdNUwFoCEdAtLvQjFAE+3V9lChoBkdAbyYL4vexfWgHTXUBaAhHQLS70vBacI91fZQoaAZHQG/KN/OMVDdoB01qAWgIR0C0u9xIFvAHdX2UKGgGRz/7n8XN1QqJaAdNFwFoCEdAtLwQka/ATXV9lChoBkdAcSOFvhqCYmgHTWsBaAhHQLS8y5fMOgB1fZQoaAZHQG+Sg/LTx5NoB01LAWgIR0C0vRWn0kGBdX2UKGgGR0BhW4Cp3os7aAdN6ANoCEdAtL0oHcDbJ3V9lChoBkdAMY6WszVMEmgHTRgBaAhHQLS9impVCHB1fZQoaAZHQGzERw6ySmtoB01GAWgIR0C0vajsD4gzdX2UKGgGR0BwdmVD8cdYaAdNWQFoCEdAtL3aOBDohnV9lChoBkdAcGFyf+S8rmgHTRwBaAhHQLS9+4lyBCl1fZQoaAZHQG4ZLB0p3HJoB03eAWgIR0C0vhSbMHKPdX2UKGgGR0BsUfNVzZHvaAdNowFoCEdAtL5MIldC3XV9lChoBkdAcNg3UhFEzGgHTWMBaAhHQLS+TowmE5B1fZQoaAZHQHIWfNeMQ3BoB01BAWgIR0C0vlPJV81GdX2UKGgGR0BrdL/KhcqwaAdNEAFoCEdAtL60cwQDm3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.997, "gae_lambda": 0.97, "ent_coef": 0.005, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPyo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c7aadf5f380>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c7aadf5f420>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c7aadf5f4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c7aadf5f560>", "_build": "<function ActorCriticPolicy._build at 0x7c7aadf5f600>", "forward": "<function ActorCriticPolicy.forward at 0x7c7aadf5f6a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c7aadf5f740>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c7aadf5f7e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c7aadf5f880>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c7aadf5f920>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c7aadf5f9c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c7aadf5fa60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c7aae3606c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 368000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652272866.0520153, "learning_rate": 0.0, "tensorboard_log": "logs", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAACWczz21Fi69O4Gs+0+aq687Hs6yqebMwAAgD8AAIA/DcoPvmtLJj+jgkU++8JZvzhAqL5xz6M+AAAAAAAAAAAA9oM8yrukPwrI1j1PIBu/VYuOPXC8Vj4AAAAAAAAAADOtiz3ogZM9aqyMvjEQ4b5zBEs9BaP4vQAAAAAAAAAADfOcvcQIwj8BnpC+vKy6vZT1QL0bHXG+AAAAAAAAAAD7loS+6UVPP1vYYz4T2EW/U+UEvwIyiz4AAAAAAAAAAM2xhbw0uMu8UPJWPmUc9Dwd1i89WyyMPQAAgD8AAIA/s5y8PTbcsz9KQfQ+RLp2vqQS7j37X3Y+AAAAAAAAAABm2ls8nBM6vD1rdj27Clc9A2GHveanpDsAAIA/AACAP1N3ET4k39k+/3PCvRUGN7/Ssos+cxcgvgAAAAAAAAAAU9sivgS/hD7+DOY+UHYhv67fPL4S3cA+AAAAAAAAAADm6DQ+KRmePw7h1j5/yDO/IV7UPslVtT4AAAAAAAAAAM2sILqfxL67tBvGO8m3AD1OVWo8yyozPAAAgD8AAIA/AICCOkhFirrKDlS0CzGfL23mJLtm6YczAACAPwAAgD/g4SO+SWmUPiVD+D4KTTe/QMQHviP52z4AAAAAAAAAAJofhTxSHOK7SpsFuxN1yDw83Z88j2q1OgAAgD8AAIA/ZiujvMV4gz/KC4+9vDiCv1Mjeb1Pir29AAAAAAAAAADjD2G+DW8pPxwAiz4n2Ua/TvHSvivIeD4AAAAAAAAAAE1UlL0RpkU/YnHjvFTGUr/1VoG+sh9NPQAAAAAAAAAAQDouvmjcrz/SeQG/TyfovhXL8b6ahtC+AAAAAAAAAADmp249bu7JPepqVb5fNQC/Ot+4PQ6pHL4AAAAAAAAAAGamNrtIx6S6hbxRMpwh5LCMYsW6xuSmsgAAgD8AAIA/mvGSO1Kg67vut2W7umMwPMAwP736IBk9AACAPwAAgD8AsCs8PW4uu2a+gjovB7Q8A14pvMuTmT0AAIA/AACAPzNA47yMbBM+vmdvPcaaAr+SxpW9he6hPQAAAAAAAAAAc2ZEvncCST9nKyC8ZwIfvzlsBb+hYRw+AAAAAAAAAACanaq718s9uzZffLye45k8JTWkvGaXgz0AAIA/AACAPzMc/bzuiLq8TVViPt2Ymr3tWiO9stIHvgAAgD8AAIA/M+fQO8NwDbw2q2c9MmcDvcZx47xj+OS+AACAPwAAgD8t45A+gG4wP3ZSA77vzUe/OM7gPjLim74AAAAAAAAAAM2kbzuFJ4G7zJQVvkzSsTzcWb48tO6WvQAAgD8AAIA/zchOvSc3LT9+j2E7g+RbvzCd/71q5kQ9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.67232, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfqg0YibmckCUhpRSlIwBbJRLpowBdJRHQHUGU/W1+iJ1fZQoaAZoCWgPQwj0o+GU+eZzQJSGlFKUaBVLs2gWR0B1B2FK02LpdX2UKGgGaAloD0MI5wDBHL1WckCUhpRSlGgVS7JoFkdAdQeE6T4cm3V9lChoBmgJaA9DCKbVkLhHanBAlIaUUpRoFUufaBZHQHUHz4xk/bF1fZQoaAZoCWgPQwisAN9tHkVzQJSGlFKUaBVLpmgWR0B1B/T7VJ+VdX2UKGgGaAloD0MIxjTTvU6DckCUhpRSlGgVS7hoFkdAdQgtwJgLJHV9lChoBmgJaA9DCEfoZ+o1pnJAlIaUUpRoFUu2aBZHQHUIUvboKUp1fZQoaAZoCWgPQwghdTv7CrJyQJSGlFKUaBVLiWgWR0B1pImBvrGBdX2UKGgGaAloD0MIforjwCu5cECUhpRSlGgVS6FoFkdAdaWfb9If83V9lChoBmgJaA9DCPLSTWIQhHJAlIaUUpRoFUuYaBZHQHWnOC9RJmN1fZQoaAZoCWgPQwgsnKT544JzQJSGlFKUaBVLt2gWR0B1qCwUxmCidX2UKGgGaAloD0MISiTRy+idcUCUhpRSlGgVS6hoFkdAdah1OCXhO3V9lChoBmgJaA9DCGSuDKpNcHNAlIaUUpRoFUu+aBZHQHWpQUg0TDh1fZQoaAZoCWgPQwjkLy3qk85xQJSGlFKUaBVLk2gWR0B1qcsMAmzCdX2UKGgGaAloD0MIqFMe3cjucUCUhpRSlGgVS4NoFkdAdaopeu3c6HV9lChoBmgJaA9DCBsuck/XeHRAlIaUUpRoFUukaBZHQHWrLDQ7cO91fZQoaAZoCWgPQwh+calKW0lyQJSGlFKUaBVLqGgWR0B1q1iLEUCadX2UKGgGaAloD0MITDeJQWBWckCUhpRSlGgVS59oFkdAdatSS/0ulHV9lChoBmgJaA9DCHPxtz3Bc3FAlIaUUpRoFUuUaBZHQHWsSYb83uN1fZQoaAZoCWgPQwiNRdPZyRVyQJSGlFKUaBVLkmgWR0B1rM57w8W9dX2UKGgGaAloD0MItp+M8WF4c0CUhpRSlGgVS5hoFkdAdazHbh3qzXV9lChoBmgJaA9DCPUsCOX9cHBAlIaUUpRoFUubaBZHQHWs8+iaiK11fZQoaAZoCWgPQwgiwyreyKVxQJSGlFKUaBVLqmgWR0B1raJrLyMDdX2UKGgGaAloD0MILo7KTRQ0ckCUhpRSlGgVS6loFkdAda4VlPJq7HV9lChoBmgJaA9DCJMCC2CKYXJAlIaUUpRoFUuRaBZHQHWvae05U991fZQoaAZoCWgPQwjirl5FBuxzQJSGlFKUaBVLqWgWR0B1r8j7hvR7dX2UKGgGaAloD0MIoaNVLWmRc0CUhpRSlGgVS7doFkdAdbAgrH2h7HV9lChoBmgJaA9DCMNHxJRIOHJAlIaUUpRoFUu1aBZHQHWw74SHuZ11fZQoaAZoCWgPQwiQ3QVKisJyQJSGlFKUaBVLt2gWR0B1sh7v5P/JdX2UKGgGaAloD0MITrnCu1zdcECUhpRSlGgVS6ZoFkdAdbIeZXuE3HV9lChoBmgJaA9DCBIT1PAtKnFAlIaUUpRoFUueaBZHQHWy9s7+1jR1fZQoaAZoCWgPQwjqIoWyMP5wQJSGlFKUaBVLjGgWR0B1tAgJTl1bdX2UKGgGaAloD0MI8s8M4kOWcUCUhpRSlGgVS5JoFkdAdbRq7iADrHV9lChoBmgJaA9DCBv1EI3u0XFAlIaUUpRoFUuVaBZHQHW07Ddgv111fZQoaAZoCWgPQwjb3m5JDuxzQJSGlFKUaBVLrGgWR0B1tj8k2P1ddX2UKGgGaAloD0MIKCob1hRFckCUhpRSlGgVS6RoFkdAdbZkjX4CZHV9lChoBmgJaA9DCPRNmgZFG3RAlIaUUpRoFUu+aBZHQHW2rlmvnr91fZQoaAZoCWgPQwid1Jel3VtzQJSGlFKUaBVLm2gWR0B1tybCrLhadX2UKGgGaAloD0MI409UNuzIcUCUhpRSlGgVS6VoFkdAdbc9/jKgZnV9lChoBmgJaA9DCAYOaOnKq3NAlIaUUpRoFUu3aBZHQHW4dKZlWfd1fZQoaAZoCWgPQwhjC0EOikBxQJSGlFKUaBVLomgWR0B1uQsvqTr3dX2UKGgGaAloD0MIZCR7hNrSckCUhpRSlGgVS55oFkdAdbrh7E5yVHV9lChoBmgJaA9DCGzp0VQPRnJAlIaUUpRoFUuoaBZHQHW7QyAQQMB1fZQoaAZoCWgPQwgMsmX5+pRyQJSGlFKUaBVLl2gWR0B1u4pjMFEBdX2UKGgGaAloD0MIV81zRH44ckCUhpRSlGgVS6hoFkdAdb3gmZ3LWHV9lChoBmgJaA9DCJc3h2v1f3NAlIaUUpRoFUuiaBZHQHW+LQgLZzx1fZQoaAZoCWgPQwiu78NBwnlxQJSGlFKUaBVLn2gWR0B1vverMkhSdX2UKGgGaAloD0MIYKxvYDKncUCUhpRSlGgVS5xoFkdAdb8cqvvBrXV9lChoBmgJaA9DCDHqWnvfyHNAlIaUUpRoFUu9aBZHQHW/tITXarZ1fZQoaAZoCWgPQwgT7pV562ZwQJSGlFKUaBVLmmgWR0B1v9Gus90SdX2UKGgGaAloD0MI2iCTjJw3ckCUhpRSlGgVS6ZoFkdAdcBeD3/PxHV9lChoBmgJaA9DCE6YMJpVdnRAlIaUUpRoFUu1aBZHQHXAs6V+qip1fZQoaAZoCWgPQwhMb38umvpzQJSGlFKUaBVLzWgWR0B1wM/4ZdfLdX2UKGgGaAloD0MIjLrW3mf3cUCUhpRSlGgVS5FoFkdAdcEIDYAbQ3V9lChoBmgJaA9DCOay0Tk/EHJAlIaUUpRoFUuPaBZHQHXB6PGQ0XR1fZQoaAZoCWgPQwiCxHb3wIFyQJSGlFKUaBVLv2gWR0B1wckzGgjAdX2UKGgGaAloD0MIe4MvTGYPcUCUhpRSlGgVS59oFkdAdcIz41xbS3V9lChoBmgJaA9DCJuuJ7quY3NAlIaUUpRoFUuraBZHQHXCPJNj9XN1fZQoaAZoCWgPQwgOoyB4fHJzQJSGlFKUaBVLvWgWR0B1wwIfKZDzdX2UKGgGaAloD0MIwVJdwMudcECUhpRSlGgVS5xoFkdAdcRftQbdanV9lChoBmgJaA9DCGCwG7at8XFAlIaUUpRoFUuWaBZHQHXEhs67ulZ1fZQoaAZoCWgPQwhOYaWCCmRyQJSGlFKUaBVLr2gWR0B1xH0L+glGdX2UKGgGaAloD0MI73TniaclckCUhpRSlGgVS6doFkdAdcWHO8kD6nV9lChoBmgJaA9DCNIag07IBXBAlIaUUpRoFUuaaBZHQHXGo0Mw1zh1fZQoaAZoCWgPQwgqjgOv1vxyQJSGlFKUaBVLmWgWR0B1x63pfQa8dX2UKGgGaAloD0MIiujX1g+tckCUhpRSlGgVS65oFkdAdchh11W8y3V9lChoBmgJaA9DCJyHE5jOfXBAlIaUUpRoFUuyaBZHQHXIhPCVKPJ1fZQoaAZoCWgPQwjfUPhs3S5wQJSGlFKUaBVLkmgWR0B1yRSl3yI6dX2UKGgGaAloD0MIjdXm/1UkdECUhpRSlGgVS7VoFkdAdcsqPfbblHV9lChoBmgJaA9DCL/zixK0MnJAlIaUUpRoFUuyaBZHQHXLHcDbJwN1fZQoaAZoCWgPQwg+esN9pPBzQJSGlFKUaBVLsWgWR0B1y3jR2KVIdX2UKGgGaAloD0MI/3ivWtleckCUhpRSlGgVS7NoFkdAdcvNR3u/lHV9lChoBmgJaA9DCI+K/ztiTnNAlIaUUpRoFUuyaBZHQHXNuzD4xlB1fZQoaAZoCWgPQwjSOqqaoJZyQJSGlFKUaBVLo2gWR0B1zm+zt1IRdX2UKGgGaAloD0MIpP56hQXlc0CUhpRSlGgVS6xoFkdAdc7fjjrAxnV9lChoBmgJaA9DCIJ1HD/Un29AlIaUUpRoFUuNaBZHQHXPQU+LWI51fZQoaAZoCWgPQwjbTIV4pDt0QJSGlFKUaBVLrWgWR0B1z2VW0Z3tdX2UKGgGaAloD0MIo3kAi7xGcECUhpRSlGgVS6BoFkdAddC8YQ8OkXV9lChoBmgJaA9DCIS7s3bb3nJAlIaUUpRoFUuHaBZHQHXRTY/Vy3l1fZQoaAZoCWgPQwiU93E0B45xQJSGlFKUaBVLm2gWR0B10aPNmlImdX2UKGgGaAloD0MIgGYQH5jDckCUhpRSlGgVS5VoFkdAddHsBhhH9XV9lChoBmgJaA9DCOi7W1mi/nJAlIaUUpRoFUu4aBZHQHXTQgcLjPx1fZQoaAZoCWgPQwi5N79h4gZwQJSGlFKUaBVLm2gWR0B11Bl9Sde6dX2UKGgGaAloD0MITFEujd9Mc0CUhpRSlGgVS6hoFkdAddRgx8D0UXV9lChoBmgJaA9DCOD2BIlt2HJAlIaUUpRoFUutaBZHQHXUpk9U0el1fZQoaAZoCWgPQwhtqBjn75tvQJSGlFKUaBVLsmgWR0B11OjBVMmGdX2UKGgGaAloD0MIy59vC9Z1ckCUhpRSlGgVS7loFkdAddUakRBeHHV9lChoBmgJaA9DCFJIMqv3yXFAlIaUUpRoFUupaBZHQHXVecQRPGh1fZQoaAZoCWgPQwiun/6z5lVxQJSGlFKUaBVLwGgWR0B11V/mT1TSdX2UKGgGaAloD0MIoYZvYd0pcECUhpRSlGgVS5RoFkdAddXqxC6YmnV9lChoBmgJaA9DCAlszsEzInJAlIaUUpRoFUuraBZHQHXW68xsVL11fZQoaAZoCWgPQwheEJGaNptwQJSGlFKUaBVLmmgWR0B118Od5IH1dX2UKGgGaAloD0MIMWE0K1sVdECUhpRSlGgVS75oFkdAddg/YraufXV9lChoBmgJaA9DCMzUJHhDvk9AlIaUUpRoFUt0aBZHQHXZpv5xiod1fZQoaAZoCWgPQwj7PEZ55plzQJSGlFKUaBVLuGgWR0B12ew8nuzAdX2UKGgGaAloD0MIBWnGoilLcUCUhpRSlGgVS5hoFkdAddrF/QSi/XV9lChoBmgJaA9DCF71gHkIXXFAlIaUUpRoFUuwaBZHQHXbsjzI3it1fZQoaAZoCWgPQwjlX8srF4lyQJSGlFKUaBVLnGgWR0B12+KEWZZ0dX2UKGgGaAloD0MI6L0xBIBHckCUhpRSlGgVS61oFkdAddx05EMLGHV9lChoBmgJaA9DCMP0vYagTHNAlIaUUpRoFUvRaBZHQHXdMKkVN6B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 19344, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVzwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsDQwaXAGQBUwCUTkcAAAAAAAAAAIaUKYwBX5SFlIwfPGlweXRob24taW5wdXQtMTMtMGU2YWIzMzgyN2FiPpSMCDxsYW1iZGE+lIwIPGxhbWJkYT6USw1DBoAAoEOAAJRDAJQpKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OTnSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBh9lH2UKGgVjAg8bGFtYmRhPpSMDF9fcXVhbG5hbWVfX5SMCDxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFowHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAAAAAAAAAJRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAAAAAAAAAAAAJRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtaW5mlIwJaGlnaF9yZXBylIwDaW5mlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7ef9a51ebafa0c3d305b03bffbfda46b52d73d7148d7c1d3452c9dfc9b6ac1f5
3
- size 148133
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a17eb1dd7d4559f55f6db75a109832b6399b64b2ac5dff1c42a8dec1a179048c
3
+ size 149287
ppo-LunarLander-v2/data CHANGED
@@ -4,67 +4,82 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x791faa37a2a0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x791faa37a340>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x791faa37a3e0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x791faa37a480>",
11
- "_build": "<function ActorCriticPolicy._build at 0x791faa37a520>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x791faa37a5c0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x791faa37a660>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x791faa37a700>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x791faa37a7a0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x791faa37a840>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x791faa37a8e0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x791faa37a980>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x791fab53d880>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1015808,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1738222917214817427,
30
- "learning_rate": 0.0002,
31
- "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA03jD16SAA/c8JmPW7plr4Yewc9l7KqPAAAAAAAAAAAGtk2vo8tc7wvFii8nTGEuvJi1T0ivFU7AACAPwAAgD+aImk+fdTEPoBLCrxUDXC+A4BJPcUNybwAAAAAAAAAADPHZL0ucxE/gxjvOwSyYL7V0VK9sgwnvQAAAAAAAAAAZjUHPsNJQLxqHas84oKVPFatRT0ygXu9AACAPwAAgD9Kkam+yyViPybWGb0rCoy+WoENvjN8VD0AAAAAAAAAAECwzj0DrTk/dkk4PSlqp76BPJU8UJk2PQAAAAAAAAAAAK0kPeG4qrqWH5W0BHdnrwD2PTpu4XMzAACAPwAAgD9TK0M+jLTHPi6HS716OVK+s/VMu73TFjwAAAAAAAAAAABph72YGT0/QtNWvR4Fxr7jkT6955rGvAAAAAAAAAAATUsOvrSpiz+ic3G+2QXUvtja3r31bo89AAAAAAAAAADNn6s819KoPzpelT6m6Ba/TdwXvFiRmrsAAAAAAAAAAGYjib6T4DU//qiKvbwRwr5Zt7e9bvO8PQAAAAAAAAAAs/yPPcPxdrqC6ko2CTtssM06w7oYA2+1AACAPwAAgD+YRoi+gtN4P2xAub7XR9++fsiNvqiZmD0AAAAAAAAAAC3oVD7SKoU/2Pl/PiP7jr6V+AU+YUqIvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCAkFB6a9bqMAWyUS92MAXSUR0C0n9WBFuvVdX2UKGgGR0BwxM8eS0SiaAdNggFoCEdAtJ/8NPP9k3V9lChoBkfAMHclkYoAn2gHS9toCEdAtKAg3YL9dnV9lChoBkdAbuzzlLeyiWgHTSIBaAhHQLSgZfyPMjh1fZQoaAZHQG7iRQzk6tFoB01oAWgIR0C0oHTYqXnhdX2UKGgGR0Bs4hK3/givaAdNqAFoCEdAtKEmgZjx1HV9lChoBkdAcRrn6l+Ey2gHTa0BaAhHQLShlZCv5gx1fZQoaAZHQDIky9EkSmJoB00BAWgIR0C0oav/aQFLdX2UKGgGR0Bv7rjghr31aAdNYQFoCEdAtKHIrbxmTXV9lChoBkdAbwfw0fozN2gHTU4BaAhHQLSnEnnMdLh1fZQoaAZHQHDWvOMVDa5oB02vAWgIR0C0pznFYMfBdX2UKGgGR0BwWC9oN/e+aAdNlQFoCEdAtKejb1yvLXV9lChoBkdAb+7J7sv7FmgHTUEBaAhHQLSnu8lXzUZ1fZQoaAZHQHBZRS1maphoB005AWgIR0C0p+54SpR5dX2UKGgGR0BsN0+PikwfaAdNQQFoCEdAtKgu8Hv+fnV9lChoBkdAcaNWrfcesGgHTS8BaAhHQLSoMYU34sV1fZQoaAZHQG6Ms9SuQp5oB01MAWgIR0C0qP18PWhAdX2UKGgGR0BuZ6v/zasZaAdNYgFoCEdAtKkh9LHuJHV9lChoBkdAcrQFWXC0nmgHTRkBaAhHQLSp3hJAdGR1fZQoaAZHQGxa5dv863loB00sAWgIR0C0qfAm/nGLdX2UKGgGR0ByXjj/+85CaAdNjgFoCEdAtKpksUZeiXV9lChoBkdAcUGv2oNutWgHTUkBaAhHQLSqj2Dxsl91fZQoaAZHQDKSsr/bTMJoB00RAWgIR0C0qrlBhQWOdX2UKGgGR0BtRF4cFQl9aAdNaQFoCEdAtKsSgxrSE3V9lChoBkdAayD60pmVaGgHTU0BaAhHQLSrIhLGrCF1fZQoaAZHQG2px2B8QZpoB01XAWgIR0C0qydZV4ordX2UKGgGR0Bvmpu2qkuZaAdNJQFoCEdAtKs4PwuuinV9lChoBkdAbpOjHn2ZiWgHTVMBaAhHQLSrn5Jsfq51fZQoaAZHQG23QevIOpdoB00kAWgIR0C0q9KBI4EPdX2UKGgGR0BvXTuc+aBqaAdNKQFoCEdAtKv9j8UEgXV9lChoBkdAcCoK77Kq42gHTWUCaAhHQLSszacI7eV1fZQoaAZHQG6RCUHIIWxoB01HAWgIR0C0rQgQ176YdX2UKGgGR0Bu4kZFXq7iaAdNHwFoCEdAtK08RZlnRXV9lChoBkdAcFvKwpvxY2gHTWsBaAhHQLStUHJcPe51fZQoaAZHQF0oJpFkQPJoB03oA2gIR0C0rXtpudf+dX2UKGgGR0BvDTZg5R0maAdNVwFoCEdAtK2jefqX4XV9lChoBkdAWpPj4pMHr2gHTegDaAhHQLStqmSQo1F1fZQoaAZHQG3OUnogV45oB00+AWgIR0C0rbD3dsSCdX2UKGgGR0BfBXQMQVbiaAdN6ANoCEdAtK4Ezl90BHV9lChoBkdAcXVnk1dgOWgHTU8BaAhHQLSuF/Ue+251fZQoaAZHQGziRMN+b3JoB01KAWgIR0C0rh5EDyOJdX2UKGgGR0Bur6xPfsNUaAdNYAFoCEdAtK5EvWYnfHV9lChoBkdAcQDdkauOj2gHTWYBaAhHQLSuYPTXrdF1fZQoaAZHQHFYIJiRW91oB01NAWgIR0C0roMKb8WLdX2UKGgGR0Br1/6XSjQBaAdNOgFoCEdAtK6JrylN13V9lChoBkdAbTlcFhXr+2gHTUQBaAhHQLSuvZ9uxbB1fZQoaAZHQHB+JOnEVFhoB00iAWgIR0C0r1dytFKDdX2UKGgGR0BwzilBQemvaAdNJgFoCEdAtK+P0h/y5XV9lChoBkdAaTPhjOLR8mgHTXcBaAhHQLSv6osZpBZ1fZQoaAZHQG/dQD3dsSFoB00yAWgIR0C0sB2MCLdfdX2UKGgGR0BxwQbVBlcyaAdNMgFoCEdAtLAoFJQLu3V9lChoBkdAb+FlCCz1LGgHTUQBaAhHQLSwbQUHpr11fZQoaAZHQHEsjbJwKjVoB00oAWgIR0C0sJaKUFB6dX2UKGgGR0BwcOuSwGGEaAdNQQFoCEdAtLYFhz/6wnV9lChoBkdAbhcm51/2CmgHTT8BaAhHQLS2B90zTF51fZQoaAZHQHB69JJ5E+hoB00sAWgIR0C0tgoomXw9dX2UKGgGR0BwsKrdWQwLaAdNKAFoCEdAtLYf0wrUb3V9lChoBkdARZ1XtBv732gHTR8BaAhHQLS2NC7sfJV1fZQoaAZHQG30KHGjsUtoB02qAWgIR0C0tkNutOmBdX2UKGgGR0BtEH/echC/aAdNQQFoCEdAtLZzslb/wXV9lChoBkdAcKvuXeFcp2gHTW8BaAhHQLS2/I7Njb11fZQoaAZHQEST/ViF0xNoB0vvaAhHQLS3FtTDO1R1fZQoaAZHQHEz43aSLZVoB01VAmgIR0C0t13kDIRzdX2UKGgGR0Bv2x8jRlYmaAdNHQFoCEdAtLej8l5WzXV9lChoBkdAbpOoOx0MgGgHTYABaAhHQLS4E0163RZ1fZQoaAZHQG9QG0u14PhoB003AWgIR0C0uB3XZoPDdX2UKGgGR0BrUyYG+sYEaAdNVAFoCEdAtLgp84Pwu3V9lChoBkdAb+madc0Lt2gHTSEBaAhHQLS4knDBMzx1fZQoaAZHQHGXfikwevJoB006AWgIR0C0uJnaFmFrdX2UKGgGR0BtNPOfNA1OaAdNYgFoCEdAtLijbM5fdHV9lChoBkdAcCdgw482aWgHTSoBaAhHQLS4ua6BiCt1fZQoaAZHQG36QDNhVlxoB01LAWgIR0C0uLwf+0gKdX2UKGgGR0BwS2fQKKHgaAdNUAFoCEdAtLjcDcM3InV9lChoBkdAb2ursByS3mgHTSUBaAhHQLS5ogzxgAp1fZQoaAZHQHBQxvJiiItoB02EAWgIR0C0ua1abF0gdX2UKGgGR0BxS/idat9yaAdNCgFoCEdAtLmzneSB9XV9lChoBkdAcj91+y7f52gHTXcBaAhHQLS6OwFC9h91fZQoaAZHQGps/OdGy5ZoB00UAmgIR0C0umlQyhzvdX2UKGgGR0ByBSptJnQIaAdNXQFoCEdAtLq8e+23KHV9lChoBkdAOxxSxZ+x4mgHTQABaAhHQLS6xCtA9mp1fZQoaAZHQHEnH18LKFJoB01IAWgIR0C0uwSeqaPTdX2UKGgGR0Bx+PGrCFbnaAdNWgFoCEdAtLsbYe1a4nV9lChoBkdAcMZeRPoFFGgHTS4BaAhHQLS7WBAOav11fZQoaAZHQHEc3/1g6U9oB012AWgIR0C0u2MSsbNsdX2UKGgGR0BxNLkwN9YwaAdNUwFoCEdAtLvQjFAE+3V9lChoBkdAbyYL4vexfWgHTXUBaAhHQLS70vBacI91fZQoaAZHQG/KN/OMVDdoB01qAWgIR0C0u9xIFvAHdX2UKGgGRz/7n8XN1QqJaAdNFwFoCEdAtLwQka/ATXV9lChoBkdAcSOFvhqCYmgHTWsBaAhHQLS8y5fMOgB1fZQoaAZHQG+Sg/LTx5NoB01LAWgIR0C0vRWn0kGBdX2UKGgGR0BhW4Cp3os7aAdN6ANoCEdAtL0oHcDbJ3V9lChoBkdAMY6WszVMEmgHTRgBaAhHQLS9impVCHB1fZQoaAZHQGzERw6ySmtoB01GAWgIR0C0vajsD4gzdX2UKGgGR0BwdmVD8cdYaAdNWQFoCEdAtL3aOBDohnV9lChoBkdAcGFyf+S8rmgHTRwBaAhHQLS9+4lyBCl1fZQoaAZHQG4ZLB0p3HJoB03eAWgIR0C0vhSbMHKPdX2UKGgGR0BsUfNVzZHvaAdNowFoCEdAtL5MIldC3XV9lChoBkdAcNg3UhFEzGgHTWMBaAhHQLS+TowmE5B1fZQoaAZHQHIWfNeMQ3BoB01BAWgIR0C0vlPJV81GdX2UKGgGR0BrdL/KhcqwaAdNEAFoCEdAtL60cwQDm3VlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 248,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
- ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
  "dtype": "float32",
59
- "bounded_below": "[ True True True True True True True True]",
60
- "bounded_above": "[ True True True True True True True True]",
61
  "_shape": [
62
  8
63
  ],
64
- "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
- "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
- "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
- "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
  "_np_random": null
69
  },
70
  "action_space": {
@@ -76,24 +91,9 @@
76
  "dtype": "int64",
77
  "_np_random": null
78
  },
79
- "n_envs": 16,
80
- "n_steps": 1024,
81
- "gamma": 0.997,
82
- "gae_lambda": 0.97,
83
- "ent_coef": 0.005,
84
- "vf_coef": 0.5,
85
- "max_grad_norm": 0.5,
86
- "batch_size": 64,
87
- "n_epochs": 4,
88
- "clip_range": {
89
- ":type:": "<class 'function'>",
90
- ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
- },
92
- "clip_range_vf": null,
93
- "normalize_advantage": true,
94
- "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
- ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPyo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
  }
99
  }
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c7aadf5f380>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c7aadf5f420>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c7aadf5f4c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c7aadf5f560>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c7aadf5f600>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c7aadf5f6a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c7aadf5f740>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c7aadf5f7e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c7aadf5f880>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c7aadf5f920>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c7aadf5f9c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c7aadf5fa60>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7c7aae3606c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 368000,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1652272866.0520153,
30
+ "learning_rate": 0.0,
31
+ "tensorboard_log": "logs",
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAACWczz21Fi69O4Gs+0+aq687Hs6yqebMwAAgD8AAIA/DcoPvmtLJj+jgkU++8JZvzhAqL5xz6M+AAAAAAAAAAAA9oM8yrukPwrI1j1PIBu/VYuOPXC8Vj4AAAAAAAAAADOtiz3ogZM9aqyMvjEQ4b5zBEs9BaP4vQAAAAAAAAAADfOcvcQIwj8BnpC+vKy6vZT1QL0bHXG+AAAAAAAAAAD7loS+6UVPP1vYYz4T2EW/U+UEvwIyiz4AAAAAAAAAAM2xhbw0uMu8UPJWPmUc9Dwd1i89WyyMPQAAgD8AAIA/s5y8PTbcsz9KQfQ+RLp2vqQS7j37X3Y+AAAAAAAAAABm2ls8nBM6vD1rdj27Clc9A2GHveanpDsAAIA/AACAP1N3ET4k39k+/3PCvRUGN7/Ssos+cxcgvgAAAAAAAAAAU9sivgS/hD7+DOY+UHYhv67fPL4S3cA+AAAAAAAAAADm6DQ+KRmePw7h1j5/yDO/IV7UPslVtT4AAAAAAAAAAM2sILqfxL67tBvGO8m3AD1OVWo8yyozPAAAgD8AAIA/AICCOkhFirrKDlS0CzGfL23mJLtm6YczAACAPwAAgD/g4SO+SWmUPiVD+D4KTTe/QMQHviP52z4AAAAAAAAAAJofhTxSHOK7SpsFuxN1yDw83Z88j2q1OgAAgD8AAIA/ZiujvMV4gz/KC4+9vDiCv1Mjeb1Pir29AAAAAAAAAADjD2G+DW8pPxwAiz4n2Ua/TvHSvivIeD4AAAAAAAAAAE1UlL0RpkU/YnHjvFTGUr/1VoG+sh9NPQAAAAAAAAAAQDouvmjcrz/SeQG/TyfovhXL8b6ahtC+AAAAAAAAAADmp249bu7JPepqVb5fNQC/Ot+4PQ6pHL4AAAAAAAAAAGamNrtIx6S6hbxRMpwh5LCMYsW6xuSmsgAAgD8AAIA/mvGSO1Kg67vut2W7umMwPMAwP736IBk9AACAPwAAgD8AsCs8PW4uu2a+gjovB7Q8A14pvMuTmT0AAIA/AACAPzNA47yMbBM+vmdvPcaaAr+SxpW9he6hPQAAAAAAAAAAc2ZEvncCST9nKyC8ZwIfvzlsBb+hYRw+AAAAAAAAAACanaq718s9uzZffLye45k8JTWkvGaXgz0AAIA/AACAPzMc/bzuiLq8TVViPt2Ymr3tWiO9stIHvgAAgD8AAIA/M+fQO8NwDbw2q2c9MmcDvcZx47xj+OS+AACAPwAAgD8t45A+gG4wP3ZSA77vzUe/OM7gPjLim74AAAAAAAAAAM2kbzuFJ4G7zJQVvkzSsTzcWb48tO6WvQAAgD8AAIA/zchOvSc3LT9+j2E7g+RbvzCd/71q5kQ9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": 0.67232,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfqg0YibmckCUhpRSlIwBbJRLpowBdJRHQHUGU/W1+iJ1fZQoaAZoCWgPQwj0o+GU+eZzQJSGlFKUaBVLs2gWR0B1B2FK02LpdX2UKGgGaAloD0MI5wDBHL1WckCUhpRSlGgVS7JoFkdAdQeE6T4cm3V9lChoBmgJaA9DCKbVkLhHanBAlIaUUpRoFUufaBZHQHUHz4xk/bF1fZQoaAZoCWgPQwisAN9tHkVzQJSGlFKUaBVLpmgWR0B1B/T7VJ+VdX2UKGgGaAloD0MIxjTTvU6DckCUhpRSlGgVS7hoFkdAdQgtwJgLJHV9lChoBmgJaA9DCEfoZ+o1pnJAlIaUUpRoFUu2aBZHQHUIUvboKUp1fZQoaAZoCWgPQwghdTv7CrJyQJSGlFKUaBVLiWgWR0B1pImBvrGBdX2UKGgGaAloD0MIforjwCu5cECUhpRSlGgVS6FoFkdAdaWfb9If83V9lChoBmgJaA9DCPLSTWIQhHJAlIaUUpRoFUuYaBZHQHWnOC9RJmN1fZQoaAZoCWgPQwgsnKT544JzQJSGlFKUaBVLt2gWR0B1qCwUxmCidX2UKGgGaAloD0MISiTRy+idcUCUhpRSlGgVS6hoFkdAdah1OCXhO3V9lChoBmgJaA9DCGSuDKpNcHNAlIaUUpRoFUu+aBZHQHWpQUg0TDh1fZQoaAZoCWgPQwjkLy3qk85xQJSGlFKUaBVLk2gWR0B1qcsMAmzCdX2UKGgGaAloD0MIqFMe3cjucUCUhpRSlGgVS4NoFkdAdaopeu3c6HV9lChoBmgJaA9DCBsuck/XeHRAlIaUUpRoFUukaBZHQHWrLDQ7cO91fZQoaAZoCWgPQwh+calKW0lyQJSGlFKUaBVLqGgWR0B1q1iLEUCadX2UKGgGaAloD0MITDeJQWBWckCUhpRSlGgVS59oFkdAdatSS/0ulHV9lChoBmgJaA9DCHPxtz3Bc3FAlIaUUpRoFUuUaBZHQHWsSYb83uN1fZQoaAZoCWgPQwiNRdPZyRVyQJSGlFKUaBVLkmgWR0B1rM57w8W9dX2UKGgGaAloD0MItp+M8WF4c0CUhpRSlGgVS5hoFkdAdazHbh3qzXV9lChoBmgJaA9DCPUsCOX9cHBAlIaUUpRoFUubaBZHQHWs8+iaiK11fZQoaAZoCWgPQwgiwyreyKVxQJSGlFKUaBVLqmgWR0B1raJrLyMDdX2UKGgGaAloD0MILo7KTRQ0ckCUhpRSlGgVS6loFkdAda4VlPJq7HV9lChoBmgJaA9DCJMCC2CKYXJAlIaUUpRoFUuRaBZHQHWvae05U991fZQoaAZoCWgPQwjirl5FBuxzQJSGlFKUaBVLqWgWR0B1r8j7hvR7dX2UKGgGaAloD0MIoaNVLWmRc0CUhpRSlGgVS7doFkdAdbAgrH2h7HV9lChoBmgJaA9DCMNHxJRIOHJAlIaUUpRoFUu1aBZHQHWw74SHuZ11fZQoaAZoCWgPQwiQ3QVKisJyQJSGlFKUaBVLt2gWR0B1sh7v5P/JdX2UKGgGaAloD0MITrnCu1zdcECUhpRSlGgVS6ZoFkdAdbIeZXuE3HV9lChoBmgJaA9DCBIT1PAtKnFAlIaUUpRoFUueaBZHQHWy9s7+1jR1fZQoaAZoCWgPQwjqIoWyMP5wQJSGlFKUaBVLjGgWR0B1tAgJTl1bdX2UKGgGaAloD0MI8s8M4kOWcUCUhpRSlGgVS5JoFkdAdbRq7iADrHV9lChoBmgJaA9DCBv1EI3u0XFAlIaUUpRoFUuVaBZHQHW07Ddgv111fZQoaAZoCWgPQwjb3m5JDuxzQJSGlFKUaBVLrGgWR0B1tj8k2P1ddX2UKGgGaAloD0MIKCob1hRFckCUhpRSlGgVS6RoFkdAdbZkjX4CZHV9lChoBmgJaA9DCPRNmgZFG3RAlIaUUpRoFUu+aBZHQHW2rlmvnr91fZQoaAZoCWgPQwid1Jel3VtzQJSGlFKUaBVLm2gWR0B1tybCrLhadX2UKGgGaAloD0MI409UNuzIcUCUhpRSlGgVS6VoFkdAdbc9/jKgZnV9lChoBmgJaA9DCAYOaOnKq3NAlIaUUpRoFUu3aBZHQHW4dKZlWfd1fZQoaAZoCWgPQwhjC0EOikBxQJSGlFKUaBVLomgWR0B1uQsvqTr3dX2UKGgGaAloD0MIZCR7hNrSckCUhpRSlGgVS55oFkdAdbrh7E5yVHV9lChoBmgJaA9DCGzp0VQPRnJAlIaUUpRoFUuoaBZHQHW7QyAQQMB1fZQoaAZoCWgPQwgMsmX5+pRyQJSGlFKUaBVLl2gWR0B1u4pjMFEBdX2UKGgGaAloD0MIV81zRH44ckCUhpRSlGgVS6hoFkdAdb3gmZ3LWHV9lChoBmgJaA9DCJc3h2v1f3NAlIaUUpRoFUuiaBZHQHW+LQgLZzx1fZQoaAZoCWgPQwiu78NBwnlxQJSGlFKUaBVLn2gWR0B1vverMkhSdX2UKGgGaAloD0MIYKxvYDKncUCUhpRSlGgVS5xoFkdAdb8cqvvBrXV9lChoBmgJaA9DCDHqWnvfyHNAlIaUUpRoFUu9aBZHQHW/tITXarZ1fZQoaAZoCWgPQwgT7pV562ZwQJSGlFKUaBVLmmgWR0B1v9Gus90SdX2UKGgGaAloD0MI2iCTjJw3ckCUhpRSlGgVS6ZoFkdAdcBeD3/PxHV9lChoBmgJaA9DCE6YMJpVdnRAlIaUUpRoFUu1aBZHQHXAs6V+qip1fZQoaAZoCWgPQwhMb38umvpzQJSGlFKUaBVLzWgWR0B1wM/4ZdfLdX2UKGgGaAloD0MIjLrW3mf3cUCUhpRSlGgVS5FoFkdAdcEIDYAbQ3V9lChoBmgJaA9DCOay0Tk/EHJAlIaUUpRoFUuPaBZHQHXB6PGQ0XR1fZQoaAZoCWgPQwiCxHb3wIFyQJSGlFKUaBVLv2gWR0B1wckzGgjAdX2UKGgGaAloD0MIe4MvTGYPcUCUhpRSlGgVS59oFkdAdcIz41xbS3V9lChoBmgJaA9DCJuuJ7quY3NAlIaUUpRoFUuraBZHQHXCPJNj9XN1fZQoaAZoCWgPQwgOoyB4fHJzQJSGlFKUaBVLvWgWR0B1wwIfKZDzdX2UKGgGaAloD0MIwVJdwMudcECUhpRSlGgVS5xoFkdAdcRftQbdanV9lChoBmgJaA9DCGCwG7at8XFAlIaUUpRoFUuWaBZHQHXEhs67ulZ1fZQoaAZoCWgPQwhOYaWCCmRyQJSGlFKUaBVLr2gWR0B1xH0L+glGdX2UKGgGaAloD0MI73TniaclckCUhpRSlGgVS6doFkdAdcWHO8kD6nV9lChoBmgJaA9DCNIag07IBXBAlIaUUpRoFUuaaBZHQHXGo0Mw1zh1fZQoaAZoCWgPQwgqjgOv1vxyQJSGlFKUaBVLmWgWR0B1x63pfQa8dX2UKGgGaAloD0MIiujX1g+tckCUhpRSlGgVS65oFkdAdchh11W8y3V9lChoBmgJaA9DCJyHE5jOfXBAlIaUUpRoFUuyaBZHQHXIhPCVKPJ1fZQoaAZoCWgPQwjfUPhs3S5wQJSGlFKUaBVLkmgWR0B1yRSl3yI6dX2UKGgGaAloD0MIjdXm/1UkdECUhpRSlGgVS7VoFkdAdcsqPfbblHV9lChoBmgJaA9DCL/zixK0MnJAlIaUUpRoFUuyaBZHQHXLHcDbJwN1fZQoaAZoCWgPQwg+esN9pPBzQJSGlFKUaBVLsWgWR0B1y3jR2KVIdX2UKGgGaAloD0MI/3ivWtleckCUhpRSlGgVS7NoFkdAdcvNR3u/lHV9lChoBmgJaA9DCI+K/ztiTnNAlIaUUpRoFUuyaBZHQHXNuzD4xlB1fZQoaAZoCWgPQwjSOqqaoJZyQJSGlFKUaBVLo2gWR0B1zm+zt1IRdX2UKGgGaAloD0MIpP56hQXlc0CUhpRSlGgVS6xoFkdAdc7fjjrAxnV9lChoBmgJaA9DCIJ1HD/Un29AlIaUUpRoFUuNaBZHQHXPQU+LWI51fZQoaAZoCWgPQwjbTIV4pDt0QJSGlFKUaBVLrWgWR0B1z2VW0Z3tdX2UKGgGaAloD0MIo3kAi7xGcECUhpRSlGgVS6BoFkdAddC8YQ8OkXV9lChoBmgJaA9DCIS7s3bb3nJAlIaUUpRoFUuHaBZHQHXRTY/Vy3l1fZQoaAZoCWgPQwiU93E0B45xQJSGlFKUaBVLm2gWR0B10aPNmlImdX2UKGgGaAloD0MIgGYQH5jDckCUhpRSlGgVS5VoFkdAddHsBhhH9XV9lChoBmgJaA9DCOi7W1mi/nJAlIaUUpRoFUu4aBZHQHXTQgcLjPx1fZQoaAZoCWgPQwi5N79h4gZwQJSGlFKUaBVLm2gWR0B11Bl9Sde6dX2UKGgGaAloD0MITFEujd9Mc0CUhpRSlGgVS6hoFkdAddRgx8D0UXV9lChoBmgJaA9DCOD2BIlt2HJAlIaUUpRoFUutaBZHQHXUpk9U0el1fZQoaAZoCWgPQwhtqBjn75tvQJSGlFKUaBVLsmgWR0B11OjBVMmGdX2UKGgGaAloD0MIy59vC9Z1ckCUhpRSlGgVS7loFkdAddUakRBeHHV9lChoBmgJaA9DCFJIMqv3yXFAlIaUUpRoFUupaBZHQHXVecQRPGh1fZQoaAZoCWgPQwiun/6z5lVxQJSGlFKUaBVLwGgWR0B11V/mT1TSdX2UKGgGaAloD0MIoYZvYd0pcECUhpRSlGgVS5RoFkdAddXqxC6YmnV9lChoBmgJaA9DCAlszsEzInJAlIaUUpRoFUuraBZHQHXW68xsVL11fZQoaAZoCWgPQwheEJGaNptwQJSGlFKUaBVLmmgWR0B118Od5IH1dX2UKGgGaAloD0MIMWE0K1sVdECUhpRSlGgVS75oFkdAddg/YraufXV9lChoBmgJaA9DCMzUJHhDvk9AlIaUUpRoFUt0aBZHQHXZpv5xiod1fZQoaAZoCWgPQwj7PEZ55plzQJSGlFKUaBVLuGgWR0B12ew8nuzAdX2UKGgGaAloD0MIBWnGoilLcUCUhpRSlGgVS5hoFkdAddrF/QSi/XV9lChoBmgJaA9DCF71gHkIXXFAlIaUUpRoFUuwaBZHQHXbsjzI3it1fZQoaAZoCWgPQwjlX8srF4lyQJSGlFKUaBVLnGgWR0B12+KEWZZ0dX2UKGgGaAloD0MI6L0xBIBHckCUhpRSlGgVS61oFkdAddx05EMLGHV9lChoBmgJaA9DCMP0vYagTHNAlIaUUpRoFUvRaBZHQHXdMKkVN6B1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 19344,
55
+ "n_steps": 2048,
56
+ "gamma": 0.999,
57
+ "gae_lambda": 0.98,
58
+ "ent_coef": 0.01,
59
+ "vf_coef": 0.5,
60
+ "max_grad_norm": 0.5,
61
+ "batch_size": 256,
62
+ "n_epochs": 8,
63
+ "clip_range": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gAWVzwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsDQwaXAGQBUwCUTkcAAAAAAAAAAIaUKYwBX5SFlIwfPGlweXRob24taW5wdXQtMTMtMGU2YWIzMzgyN2FiPpSMCDxsYW1iZGE+lIwIPGxhbWJkYT6USw1DBoAAoEOAAJRDAJQpKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OTnSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBh9lH2UKGgVjAg8bGFtYmRhPpSMDF9fcXVhbG5hbWVfX5SMCDxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFowHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
66
+ },
67
+ "clip_range_vf": null,
68
+ "normalize_advantage": true,
69
+ "target_kl": null,
70
  "observation_space": {
71
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAAAAAAAAAJRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAAAAAAAAAAAAJRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtaW5mlIwJaGlnaF9yZXBylIwDaW5mlIwKX25wX3JhbmRvbZROdWIu",
73
  "dtype": "float32",
74
+ "bounded_below": "[False False False False False False False False]",
75
+ "bounded_above": "[False False False False False False False False]",
76
  "_shape": [
77
  8
78
  ],
79
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
80
+ "high": "[inf inf inf inf inf inf inf inf]",
81
+ "low_repr": "-inf",
82
+ "high_repr": "inf",
83
  "_np_random": null
84
  },
85
  "action_space": {
 
91
  "dtype": "int64",
92
  "_np_random": null
93
  },
94
+ "n_envs": 32,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
  }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0fa374f6dafdd37295fa15a01a3f714edac4286ce6687c02c98baf9a2c732cfb
3
  size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08db214fdb91fbc57fee7a9c362e2762d9243030692c3cf580495adaec2709c1
3
  size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fe9bfa4337b69309d4f0c35bc0adbfd84f31e6f4ce095eeae99df213b316cf8d
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24489a2d29338c1deb7c03d47326dfb89ab2b458a82ea8a5b7f514ccf34b14ec
3
  size 43762
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 208.8673505, "std_reward": 55.672733007879, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-30T08:17:08.347461"}
 
1
+ {"mean_reward": 305.6164331, "std_reward": 9.307136654142008, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-30T10:13:04.840300"}