_base_ = 'ssj_270k_coco-instance.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' image_size = (1024, 1024) # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection/coco/' # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) backend_args = None # Standard Scale Jittering (SSJ) resizes and crops an image # with a resize range of 0.8 to 1.25 of the original image size. load_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=image_size, ratio_range=(0.8, 1.25), keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='RandomFlip', prob=0.5), dict(type='Pad', size=image_size), ] train_pipeline = [ dict(type='CopyPaste', max_num_pasted=100), dict(type='PackDetInputs') ] train_dataloader = dict( dataset=dict( _delete_=True, type='MultiImageMixDataset', dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=load_pipeline, backend_args=backend_args), pipeline=train_pipeline))