Collections: - Name: BoxInst Metadata: Training Data: COCO Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x A100 GPUs Architecture: - ResNet - FPN - CondInst Paper: URL: https://arxiv.org/abs/2012.02310 Title: 'BoxInst: High-Performance Instance Segmentation with Box Annotations' README: configs/boxinst/README.md Code: URL: https://github.com/open-mmlab/mmdetection/blob/v3.0.0rc6/mmdet/models/detectors/boxinst.py#L8 Version: v3.0.0rc6 Models: - Name: boxinst_r50_fpn_ms-90k_coco In Collection: BoxInst Config: configs/boxinst/boxinst_r50_fpn_ms-90k_coco.py Metadata: Iterations: 90000 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 39.4 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 30.8 Weights: https://download.openmmlab.com/mmdetection/v3.0/boxinst/boxinst_r50_fpn_ms-90k_coco/boxinst_r50_fpn_ms-90k_coco_20221228_163052-6add751a.pth - Name: boxinst_r101_fpn_ms-90k_coco In Collection: BoxInst Config: configs/boxinst/boxinst_r101_fpn_ms-90k_coco.py Metadata: Iterations: 90000 Results: - Task: Object Detection Dataset: COCO Metrics: box AP: 41.8 - Task: Instance Segmentation Dataset: COCO Metrics: mask AP: 32.7 Weights: https://download.openmmlab.com/mmdetection/v3.0/boxinst/boxinst_r101_fpn_ms-90k_coco/boxinst_r101_fpn_ms-90k_coco_20221229_145106-facf375b.pth