Saurabh1105's picture
MMdet Model for Image Segmentation
6c9ac8f
import math
from typing import Tuple, Union
import torch
import torch.nn as nn
from mmcv.cnn.bricks import Swish, build_norm_layer
from torch.nn import functional as F
from torch.nn.init import _calculate_fan_in_and_fan_out, trunc_normal_
from mmdet.registry import MODELS
from mmdet.utils import OptConfigType
def variance_scaling_trunc(tensor, gain=1.):
fan_in, _ = _calculate_fan_in_and_fan_out(tensor)
gain /= max(1.0, fan_in)
std = math.sqrt(gain) / .87962566103423978
return trunc_normal_(tensor, 0., std)
@MODELS.register_module()
class Conv2dSamePadding(nn.Conv2d):
def __init__(self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
stride: Union[int, Tuple[int, int]] = 1,
padding: Union[int, Tuple[int, int]] = 0,
dilation: Union[int, Tuple[int, int]] = 1,
groups: int = 1,
bias: bool = True):
super().__init__(in_channels, out_channels, kernel_size, stride, 0,
dilation, groups, bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
img_h, img_w = x.size()[-2:]
kernel_h, kernel_w = self.weight.size()[-2:]
extra_w = (math.ceil(img_w / self.stride[1]) -
1) * self.stride[1] - img_w + kernel_w
extra_h = (math.ceil(img_h / self.stride[0]) -
1) * self.stride[0] - img_h + kernel_h
left = extra_w // 2
right = extra_w - left
top = extra_h // 2
bottom = extra_h - top
x = F.pad(x, [left, right, top, bottom])
return F.conv2d(x, self.weight, self.bias, self.stride, self.padding,
self.dilation, self.groups)
class MaxPool2dSamePadding(nn.Module):
def __init__(self,
kernel_size: Union[int, Tuple[int, int]] = 3,
stride: Union[int, Tuple[int, int]] = 2,
**kwargs):
super().__init__()
self.pool = nn.MaxPool2d(kernel_size, stride, **kwargs)
self.stride = self.pool.stride
self.kernel_size = self.pool.kernel_size
if isinstance(self.stride, int):
self.stride = [self.stride] * 2
if isinstance(self.kernel_size, int):
self.kernel_size = [self.kernel_size] * 2
def forward(self, x):
h, w = x.shape[-2:]
extra_h = (math.ceil(w / self.stride[1]) -
1) * self.stride[1] - w + self.kernel_size[1]
extra_v = (math.ceil(h / self.stride[0]) -
1) * self.stride[0] - h + self.kernel_size[0]
left = extra_h // 2
right = extra_h - left
top = extra_v // 2
bottom = extra_v - top
x = F.pad(x, [left, right, top, bottom])
x = self.pool(x)
return x
class DepthWiseConvBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
apply_norm: bool = True,
conv_bn_act_pattern: bool = False,
norm_cfg: OptConfigType = dict(type='BN', momentum=1e-2, eps=1e-3)
) -> None:
super(DepthWiseConvBlock, self).__init__()
self.depthwise_conv = Conv2dSamePadding(
in_channels,
in_channels,
kernel_size=3,
stride=1,
groups=in_channels,
bias=False)
self.pointwise_conv = Conv2dSamePadding(
in_channels, out_channels, kernel_size=1, stride=1)
self.apply_norm = apply_norm
if self.apply_norm:
self.bn = build_norm_layer(norm_cfg, num_features=out_channels)[1]
self.apply_activation = conv_bn_act_pattern
if self.apply_activation:
self.swish = Swish()
def forward(self, x):
x = self.depthwise_conv(x)
x = self.pointwise_conv(x)
if self.apply_norm:
x = self.bn(x)
if self.apply_activation:
x = self.swish(x)
return x
class DownChannelBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
apply_norm: bool = True,
conv_bn_act_pattern: bool = False,
norm_cfg: OptConfigType = dict(type='BN', momentum=1e-2, eps=1e-3)
) -> None:
super(DownChannelBlock, self).__init__()
self.down_conv = Conv2dSamePadding(in_channels, out_channels, 1)
self.apply_norm = apply_norm
if self.apply_norm:
self.bn = build_norm_layer(norm_cfg, num_features=out_channels)[1]
self.apply_activation = conv_bn_act_pattern
if self.apply_activation:
self.swish = Swish()
def forward(self, x):
x = self.down_conv(x)
if self.apply_norm:
x = self.bn(x)
if self.apply_activation:
x = self.swish(x)
return x