Saurabh1105's picture
MMdet Model for Image Segmentation
6c9ac8f
# Copyright (c) OpenMMLab. All rights reserved.
import os
import urllib
from argparse import ArgumentParser
import mmcv
import torch
from mmengine.logging import print_log
from mmengine.utils import ProgressBar, scandir
from mmdet.apis import inference_detector, init_detector
from mmdet.registry import VISUALIZERS
from mmdet.utils import register_all_modules
IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif',
'.tiff', '.webp')
def get_file_list(source_root: str) -> [list, dict]:
"""Get file list.
Args:
source_root (str): image or video source path
Return:
source_file_path_list (list): A list for all source file.
source_type (dict): Source type: file or url or dir.
"""
is_dir = os.path.isdir(source_root)
is_url = source_root.startswith(('http:/', 'https:/'))
is_file = os.path.splitext(source_root)[-1].lower() in IMG_EXTENSIONS
source_file_path_list = []
if is_dir:
# when input source is dir
for file in scandir(source_root, IMG_EXTENSIONS, recursive=True):
source_file_path_list.append(os.path.join(source_root, file))
elif is_url:
# when input source is url
filename = os.path.basename(
urllib.parse.unquote(source_root).split('?')[0])
file_save_path = os.path.join(os.getcwd(), filename)
print(f'Downloading source file to {file_save_path}')
torch.hub.download_url_to_file(source_root, file_save_path)
source_file_path_list = [file_save_path]
elif is_file:
# when input source is single image
source_file_path_list = [source_root]
else:
print('Cannot find image file.')
source_type = dict(is_dir=is_dir, is_url=is_url, is_file=is_file)
return source_file_path_list, source_type
def parse_args():
parser = ArgumentParser()
parser.add_argument(
'img', help='Image path, include image file, dir and URL.')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument(
'--out-dir', default='./output', help='Path to output file')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--show', action='store_true', help='Show the detection results')
parser.add_argument(
'--score-thr', type=float, default=0.3, help='Bbox score threshold')
parser.add_argument(
'--dataset', type=str, help='dataset name to load the text embedding')
parser.add_argument(
'--class-name', nargs='+', type=str, help='custom class names')
args = parser.parse_args()
return args
def main():
args = parse_args()
# register all modules in mmdet into the registries
register_all_modules()
# build the model from a config file and a checkpoint file
model = init_detector(args.config, args.checkpoint, device=args.device)
if not os.path.exists(args.out_dir) and not args.show:
os.mkdir(args.out_dir)
# init visualizer
visualizer = VISUALIZERS.build(model.cfg.visualizer)
visualizer.dataset_meta = model.dataset_meta
# get file list
files, source_type = get_file_list(args.img)
from detic.utils import (get_class_names, get_text_embeddings,
reset_cls_layer_weight)
# class name embeddings
if args.class_name:
dataset_classes = args.class_name
elif args.dataset:
dataset_classes = get_class_names(args.dataset)
embedding = get_text_embeddings(
dataset=args.dataset, custom_vocabulary=args.class_name)
visualizer.dataset_meta['classes'] = dataset_classes
reset_cls_layer_weight(model, embedding)
# start detector inference
progress_bar = ProgressBar(len(files))
for file in files:
result = inference_detector(model, file)
img = mmcv.imread(file)
img = mmcv.imconvert(img, 'bgr', 'rgb')
if source_type['is_dir']:
filename = os.path.relpath(file, args.img).replace('/', '_')
else:
filename = os.path.basename(file)
out_file = None if args.show else os.path.join(args.out_dir, filename)
progress_bar.update()
visualizer.add_datasample(
filename,
img,
data_sample=result,
draw_gt=False,
show=args.show,
wait_time=0,
out_file=out_file,
pred_score_thr=args.score_thr)
if not args.show:
print_log(
f'\nResults have been saved at {os.path.abspath(args.out_dir)}')
if __name__ == '__main__':
main()