|
|
|
import os |
|
import urllib |
|
from argparse import ArgumentParser |
|
|
|
import mmcv |
|
import torch |
|
from mmengine.logging import print_log |
|
from mmengine.utils import ProgressBar, scandir |
|
|
|
from mmdet.apis import inference_detector, init_detector |
|
from mmdet.registry import VISUALIZERS |
|
from mmdet.utils import register_all_modules |
|
|
|
IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', |
|
'.tiff', '.webp') |
|
|
|
|
|
def get_file_list(source_root: str) -> [list, dict]: |
|
"""Get file list. |
|
|
|
Args: |
|
source_root (str): image or video source path |
|
|
|
Return: |
|
source_file_path_list (list): A list for all source file. |
|
source_type (dict): Source type: file or url or dir. |
|
""" |
|
is_dir = os.path.isdir(source_root) |
|
is_url = source_root.startswith(('http:/', 'https:/')) |
|
is_file = os.path.splitext(source_root)[-1].lower() in IMG_EXTENSIONS |
|
|
|
source_file_path_list = [] |
|
if is_dir: |
|
|
|
for file in scandir(source_root, IMG_EXTENSIONS, recursive=True): |
|
source_file_path_list.append(os.path.join(source_root, file)) |
|
elif is_url: |
|
|
|
filename = os.path.basename( |
|
urllib.parse.unquote(source_root).split('?')[0]) |
|
file_save_path = os.path.join(os.getcwd(), filename) |
|
print(f'Downloading source file to {file_save_path}') |
|
torch.hub.download_url_to_file(source_root, file_save_path) |
|
source_file_path_list = [file_save_path] |
|
elif is_file: |
|
|
|
source_file_path_list = [source_root] |
|
else: |
|
print('Cannot find image file.') |
|
|
|
source_type = dict(is_dir=is_dir, is_url=is_url, is_file=is_file) |
|
|
|
return source_file_path_list, source_type |
|
|
|
|
|
def parse_args(): |
|
parser = ArgumentParser() |
|
parser.add_argument( |
|
'img', help='Image path, include image file, dir and URL.') |
|
parser.add_argument('config', help='Config file') |
|
parser.add_argument('checkpoint', help='Checkpoint file') |
|
parser.add_argument( |
|
'--out-dir', default='./output', help='Path to output file') |
|
parser.add_argument( |
|
'--device', default='cuda:0', help='Device used for inference') |
|
parser.add_argument( |
|
'--show', action='store_true', help='Show the detection results') |
|
parser.add_argument( |
|
'--score-thr', type=float, default=0.3, help='Bbox score threshold') |
|
parser.add_argument( |
|
'--dataset', type=str, help='dataset name to load the text embedding') |
|
parser.add_argument( |
|
'--class-name', nargs='+', type=str, help='custom class names') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
|
|
register_all_modules() |
|
|
|
|
|
model = init_detector(args.config, args.checkpoint, device=args.device) |
|
|
|
if not os.path.exists(args.out_dir) and not args.show: |
|
os.mkdir(args.out_dir) |
|
|
|
|
|
visualizer = VISUALIZERS.build(model.cfg.visualizer) |
|
visualizer.dataset_meta = model.dataset_meta |
|
|
|
|
|
files, source_type = get_file_list(args.img) |
|
from detic.utils import (get_class_names, get_text_embeddings, |
|
reset_cls_layer_weight) |
|
|
|
|
|
if args.class_name: |
|
dataset_classes = args.class_name |
|
elif args.dataset: |
|
dataset_classes = get_class_names(args.dataset) |
|
embedding = get_text_embeddings( |
|
dataset=args.dataset, custom_vocabulary=args.class_name) |
|
visualizer.dataset_meta['classes'] = dataset_classes |
|
reset_cls_layer_weight(model, embedding) |
|
|
|
|
|
progress_bar = ProgressBar(len(files)) |
|
for file in files: |
|
result = inference_detector(model, file) |
|
|
|
img = mmcv.imread(file) |
|
img = mmcv.imconvert(img, 'bgr', 'rgb') |
|
|
|
if source_type['is_dir']: |
|
filename = os.path.relpath(file, args.img).replace('/', '_') |
|
else: |
|
filename = os.path.basename(file) |
|
out_file = None if args.show else os.path.join(args.out_dir, filename) |
|
|
|
progress_bar.update() |
|
|
|
visualizer.add_datasample( |
|
filename, |
|
img, |
|
data_sample=result, |
|
draw_gt=False, |
|
show=args.show, |
|
wait_time=0, |
|
out_file=out_file, |
|
pred_score_thr=args.score_thr) |
|
|
|
if not args.show: |
|
print_log( |
|
f'\nResults have been saved at {os.path.abspath(args.out_dir)}') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|