_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py' | |
norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) | |
model = dict( | |
backbone=dict( | |
norm_cfg=norm_cfg, | |
init_cfg=dict( | |
type='Pretrained', checkpoint='open-mmlab://contrib/resnet50_gn')), | |
neck=dict(norm_cfg=norm_cfg), | |
roi_head=dict( | |
bbox_head=dict( | |
type='Shared4Conv1FCBBoxHead', | |
conv_out_channels=256, | |
norm_cfg=norm_cfg), | |
mask_head=dict(norm_cfg=norm_cfg))) | |
# learning policy | |
max_epochs = 24 | |
train_cfg = dict(max_epochs=max_epochs) | |
# learning rate | |
param_scheduler = [ | |
dict( | |
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), | |
dict( | |
type='MultiStepLR', | |
begin=0, | |
end=max_epochs, | |
by_epoch=True, | |
milestones=[16, 22], | |
gamma=0.1) | |
] | |