|
Collections: |
|
- Name: Generalized Focal Loss |
|
Metadata: |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- Generalized Focal Loss |
|
- FPN |
|
- ResNet |
|
Paper: |
|
URL: https://arxiv.org/abs/2006.04388 |
|
Title: 'Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection' |
|
README: configs/gfl/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.2.0/mmdet/models/detectors/gfl.py#L6 |
|
Version: v2.2.0 |
|
|
|
Models: |
|
- Name: gfl_r50_fpn_1x_coco |
|
In Collection: Generalized Focal Loss |
|
Config: configs/gfl/gfl_r50_fpn_1x_coco.py |
|
Metadata: |
|
inference time (ms/im): |
|
- value: 51.28 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 40.2 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_1x_coco/gfl_r50_fpn_1x_coco_20200629_121244-25944287.pth |
|
|
|
- Name: gfl_r50_fpn_ms-2x_coco |
|
In Collection: Generalized Focal Loss |
|
Config: configs/gfl/gfl_r50_fpn_ms-2x_coco.py |
|
Metadata: |
|
inference time (ms/im): |
|
- value: 51.28 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 24 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 42.9 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_mstrain_2x_coco/gfl_r50_fpn_mstrain_2x_coco_20200629_213802-37bb1edc.pth |
|
|
|
- Name: gfl_r101_fpn_ms-2x_coco |
|
In Collection: Generalized Focal Loss |
|
Config: configs/gfl/gfl_r101_fpn_ms-2x_coco.py |
|
Metadata: |
|
inference time (ms/im): |
|
- value: 68.03 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 24 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 44.7 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_mstrain_2x_coco/gfl_r101_fpn_mstrain_2x_coco_20200629_200126-dd12f847.pth |
|
|
|
- Name: gfl_r101-dconv-c3-c5_fpn_ms-2x_coco |
|
In Collection: Generalized Focal Loss |
|
Config: configs/gfl/gfl_r101-dconv-c3-c5_fpn_ms-2x_coco.py |
|
Metadata: |
|
inference time (ms/im): |
|
- value: 77.52 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 24 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 47.1 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002-134b07df.pth |
|
|
|
- Name: gfl_x101-32x4d_fpn_ms-2x_coco |
|
In Collection: Generalized Focal Loss |
|
Config: configs/gfl/gfl_x101-32x4d_fpn_ms-2x_coco.py |
|
Metadata: |
|
inference time (ms/im): |
|
- value: 82.64 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 24 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 45.9 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_mstrain_2x_coco/gfl_x101_32x4d_fpn_mstrain_2x_coco_20200630_102002-50c1ffdb.pth |
|
|
|
- Name: gfl_x101-32x4d-dconv-c4-c5_fpn_ms-2x_coco |
|
In Collection: Generalized Focal Loss |
|
Config: configs/gfl/gfl_x101-32x4d-dconv-c4-c5_fpn_ms-2x_coco.py |
|
Metadata: |
|
inference time (ms/im): |
|
- value: 93.46 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 24 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 48.1 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco_20200630_102002-14a2bf25.pth |
|
|