|
model = dict( |
|
type='MaskRCNN', |
|
data_preprocessor=dict( |
|
type='DetDataPreprocessor', |
|
mean=[103.53, 116.28, 123.675], |
|
std=[1.0, 1.0, 1.0], |
|
bgr_to_rgb=False, |
|
pad_mask=True, |
|
pad_size_divisor=32), |
|
backbone=dict( |
|
type='ResNet', |
|
depth=50, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=False), |
|
norm_eval=True, |
|
style='caffe', |
|
init_cfg=dict( |
|
type='Pretrained', |
|
checkpoint='open-mmlab://detectron2/resnet50_caffe')), |
|
neck=dict( |
|
type='FPN', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
num_outs=5), |
|
rpn_head=dict( |
|
type='RPNHead', |
|
in_channels=256, |
|
feat_channels=256, |
|
anchor_generator=dict( |
|
type='AnchorGenerator', |
|
scales=[8], |
|
ratios=[0.5, 1.0, 2.0], |
|
strides=[4, 8, 16, 32, 64]), |
|
bbox_coder=dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[0.0, 0.0, 0.0, 0.0], |
|
target_stds=[1.0, 1.0, 1.0, 1.0]), |
|
loss_cls=dict( |
|
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), |
|
loss_bbox=dict(type='L1Loss', loss_weight=1.0)), |
|
roi_head=dict( |
|
type='StandardRoIHead', |
|
bbox_roi_extractor=dict( |
|
type='SingleRoIExtractor', |
|
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), |
|
out_channels=256, |
|
featmap_strides=[4, 8, 16, 32]), |
|
bbox_head=dict( |
|
type='Shared2FCBBoxHead', |
|
in_channels=256, |
|
fc_out_channels=1024, |
|
roi_feat_size=7, |
|
num_classes=80, |
|
bbox_coder=dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[0.0, 0.0, 0.0, 0.0], |
|
target_stds=[0.1, 0.1, 0.2, 0.2]), |
|
reg_class_agnostic=False, |
|
loss_cls=dict( |
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), |
|
loss_bbox=dict(type='L1Loss', loss_weight=1.0)), |
|
mask_roi_extractor=dict( |
|
type='SingleRoIExtractor', |
|
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), |
|
out_channels=256, |
|
featmap_strides=[4, 8, 16, 32]), |
|
mask_head=dict( |
|
type='FCNMaskHead', |
|
num_convs=4, |
|
in_channels=256, |
|
conv_out_channels=256, |
|
num_classes=80, |
|
loss_mask=dict( |
|
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))), |
|
train_cfg=dict( |
|
rpn=dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.7, |
|
neg_iou_thr=0.3, |
|
min_pos_iou=0.3, |
|
match_low_quality=True, |
|
ignore_iof_thr=-1), |
|
sampler=dict( |
|
type='RandomSampler', |
|
num=256, |
|
pos_fraction=0.5, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=False), |
|
allowed_border=-1, |
|
pos_weight=-1, |
|
debug=False), |
|
rpn_proposal=dict( |
|
nms_pre=2000, |
|
max_per_img=1000, |
|
nms=dict(type='nms', iou_threshold=0.7), |
|
min_bbox_size=0), |
|
rcnn=dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
min_pos_iou=0.5, |
|
match_low_quality=True, |
|
ignore_iof_thr=-1), |
|
sampler=dict( |
|
type='RandomSampler', |
|
num=512, |
|
pos_fraction=0.25, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=True), |
|
mask_size=28, |
|
pos_weight=-1, |
|
debug=False)), |
|
test_cfg=dict( |
|
rpn=dict( |
|
nms_pre=1000, |
|
max_per_img=1000, |
|
nms=dict(type='nms', iou_threshold=0.7), |
|
min_bbox_size=0), |
|
rcnn=dict( |
|
score_thr=0.05, |
|
nms=dict(type='nms', iou_threshold=0.5), |
|
max_per_img=100, |
|
mask_thr_binary=0.5))) |
|
dataset_type = 'CocoDataset' |
|
data_root = 'data/coco/' |
|
backend_args = None |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile', backend_args=None), |
|
dict( |
|
type='LoadAnnotations', |
|
with_bbox=True, |
|
with_mask=True, |
|
poly2mask=False), |
|
dict( |
|
type='RandomChoiceResize', |
|
scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), |
|
(1333, 768), (1333, 800)], |
|
keep_ratio=True), |
|
dict(type='RandomFlip', prob=0.5), |
|
dict(type='PackDetInputs') |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile', backend_args=None), |
|
dict(type='Resize', scale=(1333, 800), keep_ratio=True), |
|
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), |
|
dict( |
|
type='PackDetInputs', |
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', |
|
'scale_factor')) |
|
] |
|
train_dataloader = dict( |
|
batch_size=2, |
|
num_workers=2, |
|
persistent_workers=True, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
batch_sampler=dict(type='AspectRatioBatchSampler'), |
|
dataset=dict( |
|
type='CocoDataset', |
|
data_root='data/coco/', |
|
ann_file='annotations/instances_train2017.json', |
|
data_prefix=dict(img='train2017/'), |
|
filter_cfg=dict(filter_empty_gt=True, min_size=32), |
|
pipeline=[ |
|
dict(type='LoadImageFromFile', backend_args=None), |
|
dict( |
|
type='LoadAnnotations', |
|
with_bbox=True, |
|
with_mask=True, |
|
poly2mask=False), |
|
dict( |
|
type='RandomChoiceResize', |
|
scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), |
|
(1333, 768), (1333, 800)], |
|
keep_ratio=True), |
|
dict(type='RandomFlip', prob=0.5), |
|
dict(type='PackDetInputs') |
|
], |
|
backend_args=None)) |
|
val_dataloader = dict( |
|
batch_size=1, |
|
num_workers=2, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type='CocoDataset', |
|
data_root='data/coco/', |
|
ann_file='annotations/instances_val2017.json', |
|
data_prefix=dict(img='val2017/'), |
|
test_mode=True, |
|
pipeline=[ |
|
dict(type='LoadImageFromFile', backend_args=None), |
|
dict(type='Resize', scale=(1333, 800), keep_ratio=True), |
|
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), |
|
dict( |
|
type='PackDetInputs', |
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', |
|
'scale_factor')) |
|
], |
|
backend_args=None)) |
|
test_dataloader = dict( |
|
batch_size=1, |
|
num_workers=2, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type='CocoDataset', |
|
data_root='data/coco/', |
|
ann_file='annotations/instances_val2017.json', |
|
data_prefix=dict(img='val2017/'), |
|
test_mode=True, |
|
pipeline=[ |
|
dict(type='LoadImageFromFile', backend_args=None), |
|
dict(type='Resize', scale=(1333, 800), keep_ratio=True), |
|
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), |
|
dict( |
|
type='PackDetInputs', |
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', |
|
'scale_factor')) |
|
], |
|
backend_args=None)) |
|
val_evaluator = dict( |
|
type='CocoMetric', |
|
ann_file='data/coco/annotations/instances_val2017.json', |
|
metric=['bbox', 'segm'], |
|
format_only=False, |
|
backend_args=None) |
|
test_evaluator = dict( |
|
type='CocoMetric', |
|
ann_file='data/coco/annotations/instances_val2017.json', |
|
metric=['bbox', 'segm'], |
|
format_only=False, |
|
backend_args=None) |
|
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=36, val_interval=1) |
|
val_cfg = dict(type='ValLoop') |
|
test_cfg = dict(type='TestLoop') |
|
param_scheduler = [ |
|
dict( |
|
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), |
|
dict( |
|
type='MultiStepLR', |
|
begin=0, |
|
end=24, |
|
by_epoch=True, |
|
milestones=[28, 34], |
|
gamma=0.1) |
|
] |
|
optim_wrapper = dict( |
|
type='OptimWrapper', |
|
optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) |
|
auto_scale_lr = dict(enable=False, base_batch_size=16) |
|
default_scope = 'mmdet' |
|
default_hooks = dict( |
|
timer=dict(type='IterTimerHook'), |
|
logger=dict(type='LoggerHook', interval=50), |
|
param_scheduler=dict(type='ParamSchedulerHook'), |
|
checkpoint=dict(type='CheckpointHook', interval=1), |
|
sampler_seed=dict(type='DistSamplerSeedHook'), |
|
visualization=dict(type='DetVisualizationHook')) |
|
env_cfg = dict( |
|
cudnn_benchmark=False, |
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), |
|
dist_cfg=dict(backend='nccl')) |
|
vis_backends = [dict(type='LocalVisBackend')] |
|
visualizer = dict( |
|
type='DetLocalVisualizer', |
|
vis_backends=[dict(type='LocalVisBackend')], |
|
name='visualizer') |
|
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True) |
|
log_level = 'INFO' |
|
load_from = None |
|
resume = False |
|
|