MMDet / mmdetection /.dev_scripts /benchmark_test_image.py
Saurabh1105's picture
MMdet Model for Image Segmentation
6c9ac8f
# Copyright (c) OpenMMLab. All rights reserved.
import logging
import os.path as osp
from argparse import ArgumentParser
import mmcv
from mmengine.config import Config
from mmengine.logging import MMLogger
from mmengine.utils import mkdir_or_exist
from mmdet.apis import inference_detector, init_detector
from mmdet.registry import VISUALIZERS
from mmdet.utils import register_all_modules
def parse_args():
parser = ArgumentParser()
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint_root', help='Checkpoint file root path')
parser.add_argument('--img', default='demo/demo.jpg', help='Image file')
parser.add_argument('--aug', action='store_true', help='aug test')
parser.add_argument('--model-name', help='model name to inference')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument('--out-dir', default=None, help='Dir to output file')
parser.add_argument(
'--wait-time',
type=float,
default=1,
help='the interval of show (s), 0 is block')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--palette',
default='coco',
choices=['coco', 'voc', 'citys', 'random'],
help='Color palette used for visualization')
parser.add_argument(
'--score-thr', type=float, default=0.3, help='bbox score threshold')
args = parser.parse_args()
return args
def inference_model(config_name, checkpoint, visualizer, args, logger=None):
cfg = Config.fromfile(config_name)
if args.aug:
raise NotImplementedError()
model = init_detector(
cfg, checkpoint, palette=args.palette, device=args.device)
visualizer.dataset_meta = model.dataset_meta
# test a single image
result = inference_detector(model, args.img)
# show the results
if args.show or args.out_dir is not None:
img = mmcv.imread(args.img)
img = mmcv.imconvert(img, 'bgr', 'rgb')
out_file = None
if args.out_dir is not None:
out_dir = args.out_dir
mkdir_or_exist(out_dir)
out_file = osp.join(
out_dir,
config_name.split('/')[-1].replace('py', 'jpg'))
visualizer.add_datasample(
'result',
img,
data_sample=result,
draw_gt=False,
show=args.show,
wait_time=args.wait_time,
out_file=out_file,
pred_score_thr=args.score_thr)
return result
# Sample test whether the inference code is correct
def main(args):
# register all modules in mmdet into the registries
register_all_modules()
config = Config.fromfile(args.config)
# init visualizer
visualizer_cfg = dict(type='DetLocalVisualizer', name='visualizer')
visualizer = VISUALIZERS.build(visualizer_cfg)
# test single model
if args.model_name:
if args.model_name in config:
model_infos = config[args.model_name]
if not isinstance(model_infos, list):
model_infos = [model_infos]
model_info = model_infos[0]
config_name = model_info['config'].strip()
print(f'processing: {config_name}', flush=True)
checkpoint = osp.join(args.checkpoint_root,
model_info['checkpoint'].strip())
# build the model from a config file and a checkpoint file
inference_model(config_name, checkpoint, visualizer, args)
return
else:
raise RuntimeError('model name input error.')
# test all model
logger = MMLogger.get_instance(
name='MMLogger',
log_file='benchmark_test_image.log',
log_level=logging.ERROR)
for model_key in config:
model_infos = config[model_key]
if not isinstance(model_infos, list):
model_infos = [model_infos]
for model_info in model_infos:
print('processing: ', model_info['config'], flush=True)
config_name = model_info['config'].strip()
checkpoint = osp.join(args.checkpoint_root,
model_info['checkpoint'].strip())
try:
# build the model from a config file and a checkpoint file
inference_model(config_name, checkpoint, visualizer, args,
logger)
except Exception as e:
logger.error(f'{config_name} " : {repr(e)}')
if __name__ == '__main__':
args = parse_args()
main(args)