File size: 4,605 Bytes
6c9ac8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
_base_ = [
    '../_base_/datasets/coco_detection.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]

pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth'  # noqa
model = dict(
    type='ATSS',
    data_preprocessor=dict(
        type='DetDataPreprocessor',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        bgr_to_rgb=True,
        pad_size_divisor=128),
    backbone=dict(
        type='SwinTransformer',
        pretrain_img_size=384,
        embed_dims=192,
        depths=[2, 2, 18, 2],
        num_heads=[6, 12, 24, 48],
        window_size=12,
        mlp_ratio=4,
        qkv_bias=True,
        qk_scale=None,
        drop_rate=0.,
        attn_drop_rate=0.,
        drop_path_rate=0.2,
        patch_norm=True,
        out_indices=(1, 2, 3),
        # Please only add indices that would be used
        # in FPN, otherwise some parameter will not be used
        with_cp=False,
        convert_weights=True,
        init_cfg=dict(type='Pretrained', checkpoint=pretrained)),
    neck=[
        dict(
            type='FPN',
            in_channels=[384, 768, 1536],
            out_channels=256,
            start_level=0,
            add_extra_convs='on_output',
            num_outs=5),
        dict(
            type='DyHead',
            in_channels=256,
            out_channels=256,
            num_blocks=6,
            # disable zero_init_offset to follow official implementation
            zero_init_offset=False)
    ],
    bbox_head=dict(
        type='ATSSHead',
        num_classes=80,
        in_channels=256,
        pred_kernel_size=1,  # follow DyHead official implementation
        stacked_convs=0,
        feat_channels=256,
        anchor_generator=dict(
            type='AnchorGenerator',
            ratios=[1.0],
            octave_base_scale=8,
            scales_per_octave=1,
            strides=[8, 16, 32, 64, 128],
            center_offset=0.5),  # follow DyHead official implementation
        bbox_coder=dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[.0, .0, .0, .0],
            target_stds=[0.1, 0.1, 0.2, 0.2]),
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
        loss_centerness=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
    # training and testing settings
    train_cfg=dict(
        assigner=dict(type='ATSSAssigner', topk=9),
        allowed_border=-1,
        pos_weight=-1,
        debug=False),
    test_cfg=dict(
        nms_pre=1000,
        min_bbox_size=0,
        score_thr=0.05,
        nms=dict(type='nms', iou_threshold=0.6),
        max_per_img=100))

# dataset settings
train_pipeline = [
    dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(
        type='RandomResize',
        scale=[(2000, 480), (2000, 1200)],
        keep_ratio=True,
        backend='pillow'),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PackDetInputs')
]
test_pipeline = [
    dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
    dict(type='Resize', scale=(2000, 1200), keep_ratio=True, backend='pillow'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(
        type='PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor'))
]
train_dataloader = dict(
    dataset=dict(
        _delete_=True,
        type='RepeatDataset',
        times=2,
        dataset=dict(
            type={{_base_.dataset_type}},
            data_root={{_base_.data_root}},
            ann_file='annotations/instances_train2017.json',
            data_prefix=dict(img='train2017/'),
            filter_cfg=dict(filter_empty_gt=True, min_size=32),
            pipeline=train_pipeline,
            backend_args={{_base_.backend_args}})))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader

# optimizer
optim_wrapper = dict(
    _delete_=True,
    type='OptimWrapper',
    optimizer=dict(
        type='AdamW', lr=0.00005, betas=(0.9, 0.999), weight_decay=0.05),
    paramwise_cfg=dict(
        custom_keys={
            'absolute_pos_embed': dict(decay_mult=0.),
            'relative_position_bias_table': dict(decay_mult=0.),
            'norm': dict(decay_mult=0.)
        }),
    clip_grad=None)