--- license: apache-2.0 datasets: - squad language: - en metrics: - exact_match - f1 library_name: transformers pipeline_tag: question-answering --- # Model Card for Model ID This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Info to format Evaluation Dataset: Dataset({ features: ['id', 'title', 'context', 'question', 'answers'], num_rows: 10570 }) Max Tokens Length: 512 Evaluation Metrics: {'exact': 66.00660066006601, 'f1': 78.28040573606134, 'total': 909, 'HasAns_exact': 66.00660066006601, 'HasAns_f1': 78.28040573606134, 'HasAns_total': 909, 'best_exact': 66.00660066006601, 'best_exact_thresh': 0.0, 'best_f1': 78.28040573606134, 'best_f1_thresh': 0.0} Train Dataset({ features: ['id', 'title', 'context', 'question', 'answers'], num_rows: 8207 }) Eval dataset: Dataset({ features: ['id', 'title', 'context', 'question', 'answers'], num_rows: 637 }) Model: Roberta-base for question answering Dataset: squad = load_dataset("squad") squad['train'] = squad['train'].select(range(30000)) squad['test'] = squad['validation'] squad['validation'] = squad['validation'].select(range(2000))