SaraPiscitelli commited on
Commit
ac472cf
1 Parent(s): c0bb917

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -187
README.md CHANGED
@@ -10,202 +10,86 @@ metrics:
10
  library_name: transformers
11
  pipeline_tag: question-answering
12
  ---
13
- # Model Card for Model ID
14
-
15
- <!-- Provide a quick summary of what the model is/does. -->
16
-
17
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
18
-
19
- ## Model Details
20
 
21
  ### Model Description
22
 
23
- <!-- Provide a longer summary of what this model is. -->
24
-
25
-
26
-
27
- - **Developed by:** [More Information Needed]
28
- - **Funded by [optional]:** [More Information Needed]
29
- - **Shared by [optional]:** [More Information Needed]
30
- - **Model type:** [More Information Needed]
31
- - **Language(s) (NLP):** [More Information Needed]
32
- - **License:** [More Information Needed]
33
- - **Finetuned from model [optional]:** [More Information Needed]
34
-
35
- ### Model Sources [optional]
36
-
37
- <!-- Provide the basic links for the model. -->
38
-
39
- - **Repository:** [More Information Needed]
40
- - **Paper [optional]:** [More Information Needed]
41
- - **Demo [optional]:** [More Information Needed]
42
-
43
- ## Uses
44
-
45
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
-
47
- ### Direct Use
48
-
49
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
-
51
- [More Information Needed]
52
-
53
- ### Downstream Use [optional]
54
 
55
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
 
57
- [More Information Needed]
58
-
59
- ### Out-of-Scope Use
60
-
61
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
-
63
- [More Information Needed]
64
-
65
- ## Bias, Risks, and Limitations
66
-
67
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
-
69
- [More Information Needed]
70
-
71
- ### Recommendations
72
-
73
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
-
75
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
-
77
- ## How to Get Started with the Model
78
-
79
- Use the code below to get started with the model.
80
-
81
- [More Information Needed]
82
 
83
  ## Training Details
84
 
85
  ### Training Data
86
 
87
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
-
89
- [More Information Needed]
 
90
 
91
- ### Training Procedure
 
 
 
 
92
 
93
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
 
 
94
 
95
- #### Preprocessing [optional]
96
 
97
- [More Information Needed]
98
 
 
99
 
100
  #### Training Hyperparameters
101
 
102
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
-
104
- #### Speeds, Sizes, Times [optional]
105
-
106
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
-
108
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
 
110
  ## Evaluation
111
 
112
- <!-- This section describes the evaluation protocols and provides the results. -->
113
-
114
- ### Testing Data, Factors & Metrics
115
-
116
- #### Testing Data
117
-
118
- <!-- This should link to a Dataset Card if possible. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Factors
123
-
124
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
-
126
- [More Information Needed]
127
-
128
- #### Metrics
129
-
130
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
-
132
- [More Information Needed]
133
-
134
- ### Results
135
-
136
- [More Information Needed]
137
-
138
- #### Summary
139
-
140
-
141
-
142
- ## Model Examination [optional]
143
-
144
- <!-- Relevant interpretability work for the model goes here -->
145
-
146
- [More Information Needed]
147
-
148
- ## Environmental Impact
149
-
150
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
-
152
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
-
154
- - **Hardware Type:** [More Information Needed]
155
- - **Hours used:** [More Information Needed]
156
- - **Cloud Provider:** [More Information Needed]
157
- - **Compute Region:** [More Information Needed]
158
- - **Carbon Emitted:** [More Information Needed]
159
-
160
- ## Technical Specifications [optional]
161
-
162
- ### Model Architecture and Objective
163
-
164
- [More Information Needed]
165
-
166
- ### Compute Infrastructure
167
-
168
- [More Information Needed]
169
-
170
- #### Hardware
171
-
172
- [More Information Needed]
173
-
174
- #### Software
175
-
176
- [More Information Needed]
177
-
178
- ## Citation [optional]
179
-
180
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
-
182
- **BibTeX:**
183
-
184
- [More Information Needed]
185
-
186
- **APA:**
187
-
188
- [More Information Needed]
189
-
190
- ## Glossary [optional]
191
-
192
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
-
194
- [More Information Needed]
195
-
196
- ## More Information [optional]
197
-
198
- [More Information Needed]
199
-
200
- ## Model Card Authors [optional]
201
-
202
- [More Information Needed]
203
-
204
- ## Model Card Contact
205
-
206
- [More Information Needed]
207
-
208
- ### Info to format
209
  Evaluation Dataset:
210
  Dataset({
211
  features: ['id', 'title', 'context', 'question', 'answers'],
@@ -216,21 +100,22 @@ Max Tokens Length:
216
  Evaluation Metrics:
217
  {'exact': 66.00660066006601, 'f1': 78.28040573606134, 'total': 909, 'HasAns_exact': 66.00660066006601, 'HasAns_f1': 78.28040573606134, 'HasAns_total': 909, 'best_exact': 66.00660066006601, 'best_exact_thresh': 0.0, 'best_f1': 78.28040573606134, 'best_f1_thresh': 0.0}
218
 
219
- Train Dataset({
220
- features: ['id', 'title', 'context', 'question', 'answers'],
221
- num_rows: 8207
222
- })
 
 
223
 
224
- Eval dataset:
225
  Dataset({
226
  features: ['id', 'title', 'context', 'question', 'answers'],
227
- num_rows: 637
228
  })
229
 
230
- Model: Roberta-base for question answering
231
 
232
- Dataset:
233
- squad = load_dataset("squad")
234
- squad['train'] = squad['train'].select(range(30000))
235
- squad['test'] = squad['validation']
236
- squad['validation'] = squad['validation'].select(range(2000))
 
10
  library_name: transformers
11
  pipeline_tag: question-answering
12
  ---
13
+ # Model card for SaraPiscitelli/roberta-base-qa-v1
14
+ This model is a **finetuned** model starting from the base transformer model [roberta-base](https://huggingface.co/roberta-base).
15
+ This model is finetuned on **extractive question answering** task using [squad dataset](https://huggingface.co/datasets/squad).
16
+ You can access the training code [here](https://github.com/sarapiscitelli/nlp-tasks/blob/main/scripts/train/question_answering.py) and the evaluation code [here](https://github.com/sarapiscitelli/nlp-tasks/blob/main/scripts/evaluation/question_answering.py).
 
 
 
17
 
18
  ### Model Description
19
 
20
+ - **Developed by:** Sara Piscitelli
21
+ - **Model type:** Transformer Encoder - RobertaBaseForQuestionAnswering (124.056.578 params)
22
+ - **Language(s) (NLP):** English
23
+ - **License:** Apache 2.0
24
+ - **Finetuned from model:** [roberta-base](https://huggingface.co/roberta-base)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
+ ### Model Sources
27
 
28
+ - **training code:** [here](https://github.com/sarapiscitelli/nlp-tasks/blob/main/scripts/train/question_answering.py)
29
+ - **evaluation code:** [here](https://github.com/sarapiscitelli/nlp-tasks/blob/main/scripts/evaluation/question_answering.py).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
  ## Training Details
32
 
33
  ### Training Data
34
 
35
+ Train Dataset({
36
+ features: ['id', 'title', 'context', 'question', 'answers'],
37
+ num_rows: 8207
38
+ })
39
 
40
+ Eval dataset:
41
+ Dataset({
42
+ features: ['id', 'title', 'context', 'question', 'answers'],
43
+ num_rows: 637
44
+ })
45
 
46
+ Dataset:
47
+ squad = load_dataset("squad")
48
+ squad['train'] = squad['train'].select(range(30000))
49
+ squad['test'] = squad['validation']
50
+ squad['validation'] = squad['validation'].select(range(2000))
51
 
52
+ ### Training Procedure
53
 
54
+ #### Preprocessing
55
 
56
+ max-tokens-length = 512
57
 
58
  #### Training Hyperparameters
59
 
60
+ - **Training regime:** fp32
61
+ - **base_model_name_or_path:** roberta-base
62
+ - **max_tokens_length:** 512
63
+ - **weighted_loss** true
64
+ - **training_arguments:** TrainingArguments(
65
+ output_dir=results_dir,
66
+ num_train_epochs=5,
67
+ per_device_train_batch_size=8,
68
+ per_device_eval_batch_size=8,
69
+ gradient_accumulation_steps=1,
70
+ learning_rate=0.0001,
71
+ lr_scheduler_type="linear",
72
+ optim="adamw_torch",
73
+ eval_accumulation_steps=1,
74
+ evaluation_strategy="steps",
75
+ eval_steps=0.01,
76
+ save_strategy="steps",
77
+ save_steps=0.01,
78
+ logging_strategy="steps",
79
+ logging_steps=1,
80
+ report_to="tensorboard",
81
+ do_train=True,
82
+ do_eval=True,
83
+ max_grad_norm=0.3,
84
+ warmup_ratio=0.03,
85
+ group_by_length=True,
86
+ dataloader_drop_last=False,
87
+ fp16=False,
88
+ bf16=False
89
+ )
90
 
91
  ## Evaluation
92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  Evaluation Dataset:
94
  Dataset({
95
  features: ['id', 'title', 'context', 'question', 'answers'],
 
100
  Evaluation Metrics:
101
  {'exact': 66.00660066006601, 'f1': 78.28040573606134, 'total': 909, 'HasAns_exact': 66.00660066006601, 'HasAns_f1': 78.28040573606134, 'HasAns_total': 909, 'best_exact': 66.00660066006601, 'best_exact_thresh': 0.0, 'best_f1': 78.28040573606134, 'best_f1_thresh': 0.0}
102
 
103
+ ### Testing Data, Factors & Metrics
104
+
105
+ #### Testing Data
106
+
107
+ squad = load_dataset("squad")
108
+ squad['test'] = squad['validation']
109
 
 
110
  Dataset({
111
  features: ['id', 'title', 'context', 'question', 'answers'],
112
+ num_rows: 10570
113
  })
114
 
115
+ #### Metrics
116
 
117
+ metric_eval = evaluate.load("squad_v2")
118
+
119
+ ### Results
120
+
121
+ {'exact': 66.00660066006601, 'f1': 78.28040573606134, 'total': 909, 'HasAns_exact': 66.00660066006601, 'HasAns_f1': 78.28040573606134, 'HasAns_total': 909, 'best_exact': 66.00660066006601, 'best_exact_thresh': 0.0, 'best_f1': 78.28040573606134, 'best_f1_thresh': 0.0}