File size: 23,150 Bytes
3447959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
# Copyright (2024) Tsinghua University, Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import json
import contextlib
import random

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import LlamaTokenizer, StoppingCriteriaList
from peft import LoraConfig, TaskType, get_peft_model

from .Qformer import BertConfig, BertLMHeadModel
from .modeling_llama import LlamaForCausalLM
from .modeling_whisper import WhisperModel
from .beats.BEATs import BEATsConfig, BEATs
from .utils import StoppingCriteriaSub


class TINYOCTOPUS(nn.Module):
    @classmethod
    def init_speech_Qformer(cls, num_query_token, speech_width, num_hidden_layers=2):
        encoder_config = BertConfig.from_pretrained("bert-base-uncased")
        encoder_config.num_hidden_layers = num_hidden_layers
        encoder_config.encoder_width = speech_width
        # insert cross-attention layer every other block
        encoder_config.add_cross_attention = True
        encoder_config.cross_attention_freq = 1
        encoder_config.query_length = num_query_token
        Qformer = BertLMHeadModel(config=encoder_config)
        query_tokens = nn.Parameter(
            torch.zeros(1, num_query_token, encoder_config.hidden_size)
        )
        query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
        return Qformer, query_tokens

    @property
    def device(self):
        return list(self.parameters())[0].device

    def maybe_autocast(self, dtype=torch.float16):
        # if on cpu, don't use autocast
        # if on gpu, use autocast with dtype if provided, otherwise use torch.float16
        enable_autocast = self.device != torch.device("cpu")

        if enable_autocast:
            return torch.cuda.amp.autocast(dtype=dtype)
        else:
            return contextlib.nullcontext()

    def __init__(
        self,
        llama_path="",
        whisper_path="",
        freeze_whisper=True,
        beats_path="",
        freeze_beats=True,

        use_speech_Qformer=True,
        num_speech_query_token=1,
        freeze_speech_QFormer=False,
        window_level_Qformer=True,
        second_per_window=0.333333,
        second_stride=0.333333,
        
        speech_llama_proj_model="",
        freeze_speech_llama_proj=False,

        lora=True,
        lora_rank=8,
        lora_alpha=32,
        lora_dropout=0.1,

        multi_prompt=False,
        prompt_path="",
        prompt_template="",
        max_txt_len=128,
        end_sym="</s>",
        low_resource=False,  # use 8 bit
        device_8bit=0,  # the device of 8bit model should be set when loading and cannot be changed anymore.
    ):
        super().__init__()

        self.beats_path = beats_path
        self.use_speech_Qformer = use_speech_Qformer
        self.window_level_Qformer = window_level_Qformer
        self.second_per_window = second_per_window
        self.second_stride = second_stride
        self.lora = lora
        self.multi_prompt = multi_prompt
        self.max_txt_len = max_txt_len
        self.end_sym = end_sym
        self.low_resource = low_resource

        logging.info('Loading LLaMA Tokenizer')
        self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_path, use_fast=False)
        self.llama_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
        self.llama_tokenizer.padding_side = "right"

        logging.info('Loading LLaMA Model')
        if self.low_resource:
            self.llama_model = LlamaForCausalLM.from_pretrained(
                llama_path,
                torch_dtype=torch.float16,
                load_in_8bit=True,
                device_map={"": device_8bit},
            )
        else:
            self.llama_model = LlamaForCausalLM.from_pretrained(
                llama_path,
                torch_dtype=torch.float16,
            )

        self.llama_model.resize_token_embeddings(len(self.llama_tokenizer))
        for name, param in self.llama_model.named_parameters():
            param.requires_grad = False
        logging.info('Loading LLaMA Done')

        if self.lora:
            self.peft_config = LoraConfig(
                task_type=TaskType.CAUSAL_LM, 
                inference_mode=False, 
                r=lora_rank, 
                lora_alpha=lora_alpha, 
                lora_dropout=lora_dropout,
            )
            self.llama_model = get_peft_model(self.llama_model, self.peft_config)
            self.llama_model.print_trainable_parameters()
            logging.info('LoRA Training')

        assert whisper_path
        logging.info('Loading Whisper Model')
        self.speech_encoder = WhisperModel.from_pretrained(whisper_path).encoder
        self.ln_speech = nn.LayerNorm(self.speech_encoder.config.d_model)
        if freeze_whisper:
            for name, param in self.speech_encoder.named_parameters():
                param.requires_grad = False
            self.speech_encoder.eval()
            logging.info("freeze Whisper")
        
        if self.beats_path:
            logging.info("Loading BEATs Model")
            beats_ckpt = torch.load(self.beats_path, map_location='cpu')
            beats_cfg = BEATsConfig(beats_ckpt['cfg'])
            self.beats = BEATs(beats_cfg)
            self.beats.load_state_dict(beats_ckpt['model'])
            self.ln_audio = nn.LayerNorm(self.beats.cfg.encoder_embed_dim)
            if freeze_beats:
                for name, param in self.beats.named_parameters():
                    param.requires_grad = False
                self.beats.eval()
                logging.info("freeze BEATs")

        if self.use_speech_Qformer:
            if self.beats_path:
                self.speech_Qformer, self.speech_query_tokens = self.init_speech_Qformer(
                    num_query_token=num_speech_query_token, speech_width=self.speech_encoder.config.d_model + self.beats.cfg.encoder_embed_dim
                )
            else:
                self.speech_Qformer, self.speech_query_tokens = self.init_speech_Qformer(
                    num_query_token=num_speech_query_token, speech_width=self.speech_encoder.config.d_model
                )
            self.speech_Qformer.bert.embeddings.word_embeddings = None
            self.speech_Qformer.bert.embeddings.position_embeddings = None
            for layer in self.speech_Qformer.bert.encoder.layer:
                layer.output = None
                layer.intermediate = None
            self.speech_Qformer.cls = None
            if freeze_speech_QFormer:
                for name, param in self.speech_Qformer.named_parameters():
                    param.requires_grad = False
                self.speech_Qformer.eval()
                self.speech_query_tokens.requires_grad = False
                logging.info("freeze Speech QFormer")

            logging.info('Loading speech LLAMA proj')
            self.speech_llama_proj = nn.Linear(
                self.speech_Qformer.config.hidden_size, self.llama_model.config.hidden_size
            )
            if speech_llama_proj_model:
                logging.info("Loading speech LLAMA proj from {}".format(speech_llama_proj_model))
                speech_llama_proj_weight = torch.load(speech_llama_proj_model, map_location="cpu")
                self.load_state_dict(speech_llama_proj_weight['model'], strict=False)
            if freeze_speech_llama_proj:
                for name, param in self.speech_llama_proj.named_parameters():
                    param.requires_grad = False
                self.speech_llama_proj.eval()
                logging.info("freeze speech LLAMA proj")
        else:
            # feel free to add other aligners here
            raise NotImplementedError

        # prepare prompts
        self.prompt_dict = {}
        if prompt_path:
            try:
                raw_prompts = json.load(open(prompt_path, "r"))
            except:
                print("Failed to load prompt! Try to use utf-8 encoding.")
                raw_prompts = json.load(open(prompt_path, "r", encoding='utf-8'))
            for task in raw_prompts.keys():
                filted_prompts = [raw_prompt for raw_prompt in raw_prompts[task] if "<SpeechHere>" in raw_prompt]
                self.prompt_dict[task] = [prompt_template.format(p) for p in filted_prompts]
            print("Loading training prompts done!")

    def _encode_auditory_feature(self, speech_embeds, audio_embeds=None):
        with self.maybe_autocast():
            if self.use_speech_Qformer:
                speech_embeds = self.ln_speech(speech_embeds)
                if audio_embeds is not None:
                    audio_embeds = self.ln_audio(audio_embeds)
                    if audio_embeds.size(1) < speech_embeds.size(1):
                        audio_embeds = F.pad(audio_embeds, (0, 0, 0, speech_embeds.size(1) - audio_embeds.size(1)))
                    elif audio_embeds.size(1) > speech_embeds.size(1):
                        speech_embeds = F.pad(speech_embeds, (0, 0, 0, audio_embeds.size(1) - speech_embeds.size(1)))
                    speech_embeds = torch.cat((speech_embeds, audio_embeds), dim=-1)
                speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long).to(speech_embeds.device)

                if self.window_level_Qformer:
                    B, T, C = speech_embeds.shape
                    kernel = round(1500 * self.second_per_window / 30.0)
                    stride = round(1500 * self.second_stride / 30.0)
                    kernel = (1, kernel)
                    stride = (1, stride)
                    speech_embeds_tr = speech_embeds.transpose(1, 2).unsqueeze(2)
                    speech_embeds_overlap = F.unfold(speech_embeds_tr, kernel_size=kernel, dilation=1, padding=0, stride=stride)
                    _, _, L = speech_embeds_overlap.shape
                    speech_embeds_overlap = speech_embeds_overlap.view(B, -1, kernel[1], L)
                    speech_embeds_overlap = torch.permute(speech_embeds_overlap, [0, 3, 2, 1])
                    speech_embeds = speech_embeds_overlap.reshape(-1, kernel[1], C)
                    speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long, device=speech_embeds.device)

                query_tokens = self.speech_query_tokens.expand(speech_embeds.shape[0], -1, -1)
                query_output = self.speech_Qformer.bert(
                    query_embeds=query_tokens,
                    encoder_hidden_states=speech_embeds,
                    encoder_attention_mask=speech_atts,
                    return_dict=True,
                )
                speech_embeds = self.speech_llama_proj(query_output.last_hidden_state)

                if self.window_level_Qformer:
                    speech_embeds = speech_embeds.view(B, -1, speech_embeds.size(2)).contiguous()

                speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long).to(speech_embeds.device)
            else:
                raise NotImplementedError

        return speech_embeds, speech_atts

    def encode_speech(self, spectrogram, raw_wav=None, audio_padding_mask=None):
        with self.maybe_autocast():
            speech_embeds = self.speech_encoder(spectrogram, return_dict=True).last_hidden_state

            if self.beats_path and raw_wav is not None:
                audio_embeds, _ = self.beats.extract_features(raw_wav, padding_mask=audio_padding_mask, feature_only=True)
            else:
                audio_embeds = None

        return self._encode_auditory_feature(speech_embeds, audio_embeds=audio_embeds)

    def prompt_wrap(self, embeds, atts, prompt, multi_prompt=False):
        if prompt:
            if multi_prompt:
                p_before = []
                p_after = []
                for i, p in enumerate(prompt):
                    b, a = p.split("<SpeechHere>")
                    p_before.append(b)
                    p_after.append(a)
                
                p_before_tokens = self.llama_tokenizer(
                    p_before, return_tensors="pt", add_special_tokens=False
                ).to(embeds.device)
                p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids) if not self.lora else self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids)

                # speech_embeds wrapped with prompts_embeds are padded to the same length here
                p_after_tokens = self.llama_tokenizer(
                    p_after, return_tensors="pt", padding="longest", add_special_tokens=False
                ).to(embeds.device)
                p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids) if not self.lora else self.llama_model.model.model.embed_tokens(p_after_tokens.input_ids)

                wrapped_embeds = torch.cat([p_before_embeds, embeds, p_after_embeds], dim=1)
                wrapped_atts = torch.cat([p_before_tokens.attention_mask, atts, p_after_tokens.attention_mask], dim=1)
            else:
                batch_size = embeds.shape[0]
                p_before, p_after = prompt.split("<SpeechHere>")

                p_before_tokens = self.llama_tokenizer(
                    p_before, return_tensors="pt", add_special_tokens=False
                ).to(embeds.device)
                p_after_tokens = self.llama_tokenizer(
                    p_after, return_tensors="pt", add_special_tokens=False
                ).to(embeds.device)
                p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) if not self.lora else self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1)
                p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1) if not self.lora else self.llama_model.model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1)

                wrapped_embeds = torch.cat([p_before_embeds, embeds, p_after_embeds], dim=1)
                wrapped_atts = torch.cat([p_before_tokens.attention_mask, atts, p_after_tokens.attention_mask], dim=1)
            return wrapped_embeds, wrapped_atts
        else:
            return embeds, atts

    def forward(self, samples, verbose=False):
        # detect whether there are multi tasks in this batch
        task = list(set(samples["task"]))
        if len(task) > 1 or "QA" in task:
            self.multi_prompt = True

        # prepare prompts
        if self.prompt_dict:
            if self.multi_prompt:
                prompt = [random.choice(self.prompt_dict[task]) for task in samples["task"]]
                if "Q" in samples:
                    prompt = [p.format(q) if '{}' in p else p for p, q in zip(prompt, samples["Q"]) ]
            else:
                prompt = random.choice(self.prompt_dict[samples["task"][0]])

        # use speech/audio encoder to encode speech/audio
        spectrogram = samples["spectrogram"]
        raw_wav = samples.get("raw_wav", None)
        # print(raw_wav)
        audio_padding_mask = samples.get("padding_mask", None)

        speech_embeds, speech_atts = self.encode_speech(spectrogram, raw_wav=raw_wav, audio_padding_mask=audio_padding_mask)

        # wrap speech_embeds with prompts
        if self.prompt_dict:
            speech_embeds, speech_atts = self.prompt_wrap(speech_embeds, speech_atts, prompt, multi_prompt=self.multi_prompt)

        # prepare inputs for LLM
        text = [t + self.end_sym for t in samples["text"]]
        to_regress_tokens = self.llama_tokenizer(
            text,
            return_tensors="pt",
            padding="longest",
            truncation=True,
            max_length=self.max_txt_len,
            add_special_tokens=False
        ).to(spectrogram.device)
        to_regress_embeds = self.llama_model.model.embed_tokens(to_regress_tokens.input_ids) if not self.lora else self.llama_model.model.model.embed_tokens(to_regress_tokens.input_ids)
        targets = to_regress_tokens.input_ids.masked_fill(
            to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100
        )
        empty_targets = (
            torch.ones(
                [speech_atts.shape[0], speech_atts.shape[1] + 1],
                dtype=torch.long
            ).to(spectrogram.device).fill_(-100)
        )
        targets = torch.cat([empty_targets, targets], dim=1)

        batch_size = speech_embeds.shape[0]
        bos = torch.ones(
            [batch_size, 1],
            dtype=to_regress_tokens.input_ids.dtype,
            device=to_regress_tokens.input_ids.device,
        ) * self.llama_tokenizer.bos_token_id
        bos_embeds = self.llama_model.model.embed_tokens(bos) if not self.lora else self.llama_model.model.model.embed_tokens(bos)
        atts_bos = speech_atts[:, :1]

        inputs_embeds = torch.cat([bos_embeds, speech_embeds, to_regress_embeds], dim=1)
        attention_mask = torch.cat([atts_bos, speech_atts, to_regress_tokens.attention_mask], dim=1)

        # calulate loss
        with self.maybe_autocast():
            outputs = self.llama_model(
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                return_dict=True,
                labels=targets,
            )
            loss = outputs.loss

        if verbose:
            nvocab = self.llama_model.config.vocab_size
            results = outputs.logits[:, empty_targets.size(1) - 1: -1, :].contiguous().view(-1, nvocab).argmax(dim=-1)
            labels = targets[:, empty_targets.size(1):].contiguous().view(-1)
            mask = (labels != -100)
            correct = (results[mask] == labels[mask]).float().sum()
            total = len(labels[mask])

        if verbose:
            return {"loss": loss, "correct": correct, "total": total}

        return {"loss": loss}

    def generate(self, samples, generate_cfg, prompts=None):
        batch_size = samples["spectrogram"].shape[0]

        spectrogram = samples["spectrogram"]
        raw_wav = samples.get("raw_wav", None)
        audio_padding_mask = samples.get("padding_mask", None)

        speech_embeds, speech_atts = self.encode_speech(spectrogram, raw_wav=raw_wav, audio_padding_mask=audio_padding_mask)

        if prompts is not None:
            speech_embeds, speech_atts = self.prompt_wrap(speech_embeds, speech_atts, prompts, multi_prompt=True)

        bos = torch.ones(
            [batch_size, 1],
            dtype=torch.int32,
            device=speech_embeds.device,
        ) * self.llama_tokenizer.bos_token_id
        bos_embeds = self.llama_model.model.embed_tokens(bos) if not self.lora else self.llama_model.model.model.embed_tokens(bos)
        atts_bos = speech_atts[:, :1]

        embeds = torch.cat([bos_embeds, speech_embeds], dim=1)
        attns = torch.cat([atts_bos, speech_atts], dim=1)

        stop_words_ids = [torch.tensor([2]).cuda()]  
        stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
        outputs = self.llama_model.generate(
            inputs_embeds=embeds,
            max_new_tokens=generate_cfg.get("max_new_tokens", 200),
            stopping_criteria=stopping_criteria,
            num_beams=generate_cfg.get("num_beams", 4),
            do_sample=generate_cfg.get("do_sample", False),
            min_length=generate_cfg.get("min_length", 1),
            temperature=generate_cfg.get("temperature", 1.0),
            top_p=generate_cfg.get("top_p", 0.9),
            repetition_penalty=generate_cfg.get("repetition_penalty", 1.0),
            length_penalty=generate_cfg.get("length_penalty", 1.0),
            attention_mask=attns,
        )
        text = self.llama_tokenizer.batch_decode(outputs, add_special_tokens=False)

        return text

    @classmethod
    def from_config(cls, config):
        llama_path = config.get("llama_path")
        whisper_path = config.get("whisper_path")
        freeze_whisper = config.get("freeze_whisper", True)
        beats_path = config.get("beats_path", "")
        freeze_beats = config.get("freeze_beats", True)

        use_speech_Qformer = config.get("use_speech_Qformer", True)
        num_speech_query_token = config.get("num_speech_query_token", 1)
        freeze_speech_QFormer = config.get("freeze_speech_QFormer", False)
        window_level_Qformer = config.get("window_level_Qformer", True)
        second_per_window = config.get("second_per_window", 0.333333)
        second_stride = config.get("second_stride", 0.333333)

        speech_llama_proj_model = config.get("speech_llama_proj_model", "")
        freeze_speech_llama_proj = config.get("freeze_speech_llama_proj", False)

        lora = config.get("lora", True)
        lora_rank = config.get("lora_rank", 8)
        lora_alpha = config.get("lora_alpha", 32)
        lora_dropout = config.get("lora_dropout", 0.1)

        multi_prompt = config.get("multi_prompt", False)
        prompt_path = config.get("prompt_path", "")
        prompt_template = config.get("prompt_template", "")
        max_txt_len = config.get("max_txt_len", 128)
        end_sym = config.get("end_sym", "</s>")
        low_resource = config.get("low_resource", False)
        device_8bit = config.get("device_8bit", 0)

        model = cls(
            llama_path=llama_path,
            whisper_path=whisper_path,
            freeze_whisper=freeze_whisper,
            beats_path=beats_path,
            freeze_beats=freeze_beats,
            use_speech_Qformer=use_speech_Qformer,
            num_speech_query_token=num_speech_query_token,
            freeze_speech_QFormer=freeze_speech_QFormer,
            window_level_Qformer=window_level_Qformer,
            second_per_window=second_per_window,
            second_stride=second_stride,
            speech_llama_proj_model=speech_llama_proj_model,
            freeze_speech_llama_proj=freeze_speech_llama_proj,
            lora=lora,
            lora_rank=lora_rank,
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            multi_prompt=multi_prompt,
            prompt_path=prompt_path,
            prompt_template=prompt_template,
            max_txt_len=max_txt_len,
            end_sym=end_sym,
            low_resource=low_resource,
            device_8bit=device_8bit,
        )

        ckpt_path = config.get("ckpt", "")
        if ckpt_path:
            logging.info("Load TinyOctopus ckpt from: {}".format(ckpt_path))
            ckpt = torch.load(ckpt_path, map_location="cpu")
            model.load_state_dict(ckpt['model'], strict=False)

        return model