File size: 23,150 Bytes
3447959 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
# Copyright (2024) Tsinghua University, Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import json
import contextlib
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import LlamaTokenizer, StoppingCriteriaList
from peft import LoraConfig, TaskType, get_peft_model
from .Qformer import BertConfig, BertLMHeadModel
from .modeling_llama import LlamaForCausalLM
from .modeling_whisper import WhisperModel
from .beats.BEATs import BEATsConfig, BEATs
from .utils import StoppingCriteriaSub
class TINYOCTOPUS(nn.Module):
@classmethod
def init_speech_Qformer(cls, num_query_token, speech_width, num_hidden_layers=2):
encoder_config = BertConfig.from_pretrained("bert-base-uncased")
encoder_config.num_hidden_layers = num_hidden_layers
encoder_config.encoder_width = speech_width
# insert cross-attention layer every other block
encoder_config.add_cross_attention = True
encoder_config.cross_attention_freq = 1
encoder_config.query_length = num_query_token
Qformer = BertLMHeadModel(config=encoder_config)
query_tokens = nn.Parameter(
torch.zeros(1, num_query_token, encoder_config.hidden_size)
)
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
return Qformer, query_tokens
@property
def device(self):
return list(self.parameters())[0].device
def maybe_autocast(self, dtype=torch.float16):
# if on cpu, don't use autocast
# if on gpu, use autocast with dtype if provided, otherwise use torch.float16
enable_autocast = self.device != torch.device("cpu")
if enable_autocast:
return torch.cuda.amp.autocast(dtype=dtype)
else:
return contextlib.nullcontext()
def __init__(
self,
llama_path="",
whisper_path="",
freeze_whisper=True,
beats_path="",
freeze_beats=True,
use_speech_Qformer=True,
num_speech_query_token=1,
freeze_speech_QFormer=False,
window_level_Qformer=True,
second_per_window=0.333333,
second_stride=0.333333,
speech_llama_proj_model="",
freeze_speech_llama_proj=False,
lora=True,
lora_rank=8,
lora_alpha=32,
lora_dropout=0.1,
multi_prompt=False,
prompt_path="",
prompt_template="",
max_txt_len=128,
end_sym="</s>",
low_resource=False, # use 8 bit
device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore.
):
super().__init__()
self.beats_path = beats_path
self.use_speech_Qformer = use_speech_Qformer
self.window_level_Qformer = window_level_Qformer
self.second_per_window = second_per_window
self.second_stride = second_stride
self.lora = lora
self.multi_prompt = multi_prompt
self.max_txt_len = max_txt_len
self.end_sym = end_sym
self.low_resource = low_resource
logging.info('Loading LLaMA Tokenizer')
self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_path, use_fast=False)
self.llama_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
self.llama_tokenizer.padding_side = "right"
logging.info('Loading LLaMA Model')
if self.low_resource:
self.llama_model = LlamaForCausalLM.from_pretrained(
llama_path,
torch_dtype=torch.float16,
load_in_8bit=True,
device_map={"": device_8bit},
)
else:
self.llama_model = LlamaForCausalLM.from_pretrained(
llama_path,
torch_dtype=torch.float16,
)
self.llama_model.resize_token_embeddings(len(self.llama_tokenizer))
for name, param in self.llama_model.named_parameters():
param.requires_grad = False
logging.info('Loading LLaMA Done')
if self.lora:
self.peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
)
self.llama_model = get_peft_model(self.llama_model, self.peft_config)
self.llama_model.print_trainable_parameters()
logging.info('LoRA Training')
assert whisper_path
logging.info('Loading Whisper Model')
self.speech_encoder = WhisperModel.from_pretrained(whisper_path).encoder
self.ln_speech = nn.LayerNorm(self.speech_encoder.config.d_model)
if freeze_whisper:
for name, param in self.speech_encoder.named_parameters():
param.requires_grad = False
self.speech_encoder.eval()
logging.info("freeze Whisper")
if self.beats_path:
logging.info("Loading BEATs Model")
beats_ckpt = torch.load(self.beats_path, map_location='cpu')
beats_cfg = BEATsConfig(beats_ckpt['cfg'])
self.beats = BEATs(beats_cfg)
self.beats.load_state_dict(beats_ckpt['model'])
self.ln_audio = nn.LayerNorm(self.beats.cfg.encoder_embed_dim)
if freeze_beats:
for name, param in self.beats.named_parameters():
param.requires_grad = False
self.beats.eval()
logging.info("freeze BEATs")
if self.use_speech_Qformer:
if self.beats_path:
self.speech_Qformer, self.speech_query_tokens = self.init_speech_Qformer(
num_query_token=num_speech_query_token, speech_width=self.speech_encoder.config.d_model + self.beats.cfg.encoder_embed_dim
)
else:
self.speech_Qformer, self.speech_query_tokens = self.init_speech_Qformer(
num_query_token=num_speech_query_token, speech_width=self.speech_encoder.config.d_model
)
self.speech_Qformer.bert.embeddings.word_embeddings = None
self.speech_Qformer.bert.embeddings.position_embeddings = None
for layer in self.speech_Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
self.speech_Qformer.cls = None
if freeze_speech_QFormer:
for name, param in self.speech_Qformer.named_parameters():
param.requires_grad = False
self.speech_Qformer.eval()
self.speech_query_tokens.requires_grad = False
logging.info("freeze Speech QFormer")
logging.info('Loading speech LLAMA proj')
self.speech_llama_proj = nn.Linear(
self.speech_Qformer.config.hidden_size, self.llama_model.config.hidden_size
)
if speech_llama_proj_model:
logging.info("Loading speech LLAMA proj from {}".format(speech_llama_proj_model))
speech_llama_proj_weight = torch.load(speech_llama_proj_model, map_location="cpu")
self.load_state_dict(speech_llama_proj_weight['model'], strict=False)
if freeze_speech_llama_proj:
for name, param in self.speech_llama_proj.named_parameters():
param.requires_grad = False
self.speech_llama_proj.eval()
logging.info("freeze speech LLAMA proj")
else:
# feel free to add other aligners here
raise NotImplementedError
# prepare prompts
self.prompt_dict = {}
if prompt_path:
try:
raw_prompts = json.load(open(prompt_path, "r"))
except:
print("Failed to load prompt! Try to use utf-8 encoding.")
raw_prompts = json.load(open(prompt_path, "r", encoding='utf-8'))
for task in raw_prompts.keys():
filted_prompts = [raw_prompt for raw_prompt in raw_prompts[task] if "<SpeechHere>" in raw_prompt]
self.prompt_dict[task] = [prompt_template.format(p) for p in filted_prompts]
print("Loading training prompts done!")
def _encode_auditory_feature(self, speech_embeds, audio_embeds=None):
with self.maybe_autocast():
if self.use_speech_Qformer:
speech_embeds = self.ln_speech(speech_embeds)
if audio_embeds is not None:
audio_embeds = self.ln_audio(audio_embeds)
if audio_embeds.size(1) < speech_embeds.size(1):
audio_embeds = F.pad(audio_embeds, (0, 0, 0, speech_embeds.size(1) - audio_embeds.size(1)))
elif audio_embeds.size(1) > speech_embeds.size(1):
speech_embeds = F.pad(speech_embeds, (0, 0, 0, audio_embeds.size(1) - speech_embeds.size(1)))
speech_embeds = torch.cat((speech_embeds, audio_embeds), dim=-1)
speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long).to(speech_embeds.device)
if self.window_level_Qformer:
B, T, C = speech_embeds.shape
kernel = round(1500 * self.second_per_window / 30.0)
stride = round(1500 * self.second_stride / 30.0)
kernel = (1, kernel)
stride = (1, stride)
speech_embeds_tr = speech_embeds.transpose(1, 2).unsqueeze(2)
speech_embeds_overlap = F.unfold(speech_embeds_tr, kernel_size=kernel, dilation=1, padding=0, stride=stride)
_, _, L = speech_embeds_overlap.shape
speech_embeds_overlap = speech_embeds_overlap.view(B, -1, kernel[1], L)
speech_embeds_overlap = torch.permute(speech_embeds_overlap, [0, 3, 2, 1])
speech_embeds = speech_embeds_overlap.reshape(-1, kernel[1], C)
speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long, device=speech_embeds.device)
query_tokens = self.speech_query_tokens.expand(speech_embeds.shape[0], -1, -1)
query_output = self.speech_Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=speech_embeds,
encoder_attention_mask=speech_atts,
return_dict=True,
)
speech_embeds = self.speech_llama_proj(query_output.last_hidden_state)
if self.window_level_Qformer:
speech_embeds = speech_embeds.view(B, -1, speech_embeds.size(2)).contiguous()
speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long).to(speech_embeds.device)
else:
raise NotImplementedError
return speech_embeds, speech_atts
def encode_speech(self, spectrogram, raw_wav=None, audio_padding_mask=None):
with self.maybe_autocast():
speech_embeds = self.speech_encoder(spectrogram, return_dict=True).last_hidden_state
if self.beats_path and raw_wav is not None:
audio_embeds, _ = self.beats.extract_features(raw_wav, padding_mask=audio_padding_mask, feature_only=True)
else:
audio_embeds = None
return self._encode_auditory_feature(speech_embeds, audio_embeds=audio_embeds)
def prompt_wrap(self, embeds, atts, prompt, multi_prompt=False):
if prompt:
if multi_prompt:
p_before = []
p_after = []
for i, p in enumerate(prompt):
b, a = p.split("<SpeechHere>")
p_before.append(b)
p_after.append(a)
p_before_tokens = self.llama_tokenizer(
p_before, return_tensors="pt", add_special_tokens=False
).to(embeds.device)
p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids) if not self.lora else self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids)
# speech_embeds wrapped with prompts_embeds are padded to the same length here
p_after_tokens = self.llama_tokenizer(
p_after, return_tensors="pt", padding="longest", add_special_tokens=False
).to(embeds.device)
p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids) if not self.lora else self.llama_model.model.model.embed_tokens(p_after_tokens.input_ids)
wrapped_embeds = torch.cat([p_before_embeds, embeds, p_after_embeds], dim=1)
wrapped_atts = torch.cat([p_before_tokens.attention_mask, atts, p_after_tokens.attention_mask], dim=1)
else:
batch_size = embeds.shape[0]
p_before, p_after = prompt.split("<SpeechHere>")
p_before_tokens = self.llama_tokenizer(
p_before, return_tensors="pt", add_special_tokens=False
).to(embeds.device)
p_after_tokens = self.llama_tokenizer(
p_after, return_tensors="pt", add_special_tokens=False
).to(embeds.device)
p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) if not self.lora else self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1)
p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1) if not self.lora else self.llama_model.model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1)
wrapped_embeds = torch.cat([p_before_embeds, embeds, p_after_embeds], dim=1)
wrapped_atts = torch.cat([p_before_tokens.attention_mask, atts, p_after_tokens.attention_mask], dim=1)
return wrapped_embeds, wrapped_atts
else:
return embeds, atts
def forward(self, samples, verbose=False):
# detect whether there are multi tasks in this batch
task = list(set(samples["task"]))
if len(task) > 1 or "QA" in task:
self.multi_prompt = True
# prepare prompts
if self.prompt_dict:
if self.multi_prompt:
prompt = [random.choice(self.prompt_dict[task]) for task in samples["task"]]
if "Q" in samples:
prompt = [p.format(q) if '{}' in p else p for p, q in zip(prompt, samples["Q"]) ]
else:
prompt = random.choice(self.prompt_dict[samples["task"][0]])
# use speech/audio encoder to encode speech/audio
spectrogram = samples["spectrogram"]
raw_wav = samples.get("raw_wav", None)
# print(raw_wav)
audio_padding_mask = samples.get("padding_mask", None)
speech_embeds, speech_atts = self.encode_speech(spectrogram, raw_wav=raw_wav, audio_padding_mask=audio_padding_mask)
# wrap speech_embeds with prompts
if self.prompt_dict:
speech_embeds, speech_atts = self.prompt_wrap(speech_embeds, speech_atts, prompt, multi_prompt=self.multi_prompt)
# prepare inputs for LLM
text = [t + self.end_sym for t in samples["text"]]
to_regress_tokens = self.llama_tokenizer(
text,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.max_txt_len,
add_special_tokens=False
).to(spectrogram.device)
to_regress_embeds = self.llama_model.model.embed_tokens(to_regress_tokens.input_ids) if not self.lora else self.llama_model.model.model.embed_tokens(to_regress_tokens.input_ids)
targets = to_regress_tokens.input_ids.masked_fill(
to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100
)
empty_targets = (
torch.ones(
[speech_atts.shape[0], speech_atts.shape[1] + 1],
dtype=torch.long
).to(spectrogram.device).fill_(-100)
)
targets = torch.cat([empty_targets, targets], dim=1)
batch_size = speech_embeds.shape[0]
bos = torch.ones(
[batch_size, 1],
dtype=to_regress_tokens.input_ids.dtype,
device=to_regress_tokens.input_ids.device,
) * self.llama_tokenizer.bos_token_id
bos_embeds = self.llama_model.model.embed_tokens(bos) if not self.lora else self.llama_model.model.model.embed_tokens(bos)
atts_bos = speech_atts[:, :1]
inputs_embeds = torch.cat([bos_embeds, speech_embeds, to_regress_embeds], dim=1)
attention_mask = torch.cat([atts_bos, speech_atts, to_regress_tokens.attention_mask], dim=1)
# calulate loss
with self.maybe_autocast():
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
if verbose:
nvocab = self.llama_model.config.vocab_size
results = outputs.logits[:, empty_targets.size(1) - 1: -1, :].contiguous().view(-1, nvocab).argmax(dim=-1)
labels = targets[:, empty_targets.size(1):].contiguous().view(-1)
mask = (labels != -100)
correct = (results[mask] == labels[mask]).float().sum()
total = len(labels[mask])
if verbose:
return {"loss": loss, "correct": correct, "total": total}
return {"loss": loss}
def generate(self, samples, generate_cfg, prompts=None):
batch_size = samples["spectrogram"].shape[0]
spectrogram = samples["spectrogram"]
raw_wav = samples.get("raw_wav", None)
audio_padding_mask = samples.get("padding_mask", None)
speech_embeds, speech_atts = self.encode_speech(spectrogram, raw_wav=raw_wav, audio_padding_mask=audio_padding_mask)
if prompts is not None:
speech_embeds, speech_atts = self.prompt_wrap(speech_embeds, speech_atts, prompts, multi_prompt=True)
bos = torch.ones(
[batch_size, 1],
dtype=torch.int32,
device=speech_embeds.device,
) * self.llama_tokenizer.bos_token_id
bos_embeds = self.llama_model.model.embed_tokens(bos) if not self.lora else self.llama_model.model.model.embed_tokens(bos)
atts_bos = speech_atts[:, :1]
embeds = torch.cat([bos_embeds, speech_embeds], dim=1)
attns = torch.cat([atts_bos, speech_atts], dim=1)
stop_words_ids = [torch.tensor([2]).cuda()]
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
outputs = self.llama_model.generate(
inputs_embeds=embeds,
max_new_tokens=generate_cfg.get("max_new_tokens", 200),
stopping_criteria=stopping_criteria,
num_beams=generate_cfg.get("num_beams", 4),
do_sample=generate_cfg.get("do_sample", False),
min_length=generate_cfg.get("min_length", 1),
temperature=generate_cfg.get("temperature", 1.0),
top_p=generate_cfg.get("top_p", 0.9),
repetition_penalty=generate_cfg.get("repetition_penalty", 1.0),
length_penalty=generate_cfg.get("length_penalty", 1.0),
attention_mask=attns,
)
text = self.llama_tokenizer.batch_decode(outputs, add_special_tokens=False)
return text
@classmethod
def from_config(cls, config):
llama_path = config.get("llama_path")
whisper_path = config.get("whisper_path")
freeze_whisper = config.get("freeze_whisper", True)
beats_path = config.get("beats_path", "")
freeze_beats = config.get("freeze_beats", True)
use_speech_Qformer = config.get("use_speech_Qformer", True)
num_speech_query_token = config.get("num_speech_query_token", 1)
freeze_speech_QFormer = config.get("freeze_speech_QFormer", False)
window_level_Qformer = config.get("window_level_Qformer", True)
second_per_window = config.get("second_per_window", 0.333333)
second_stride = config.get("second_stride", 0.333333)
speech_llama_proj_model = config.get("speech_llama_proj_model", "")
freeze_speech_llama_proj = config.get("freeze_speech_llama_proj", False)
lora = config.get("lora", True)
lora_rank = config.get("lora_rank", 8)
lora_alpha = config.get("lora_alpha", 32)
lora_dropout = config.get("lora_dropout", 0.1)
multi_prompt = config.get("multi_prompt", False)
prompt_path = config.get("prompt_path", "")
prompt_template = config.get("prompt_template", "")
max_txt_len = config.get("max_txt_len", 128)
end_sym = config.get("end_sym", "</s>")
low_resource = config.get("low_resource", False)
device_8bit = config.get("device_8bit", 0)
model = cls(
llama_path=llama_path,
whisper_path=whisper_path,
freeze_whisper=freeze_whisper,
beats_path=beats_path,
freeze_beats=freeze_beats,
use_speech_Qformer=use_speech_Qformer,
num_speech_query_token=num_speech_query_token,
freeze_speech_QFormer=freeze_speech_QFormer,
window_level_Qformer=window_level_Qformer,
second_per_window=second_per_window,
second_stride=second_stride,
speech_llama_proj_model=speech_llama_proj_model,
freeze_speech_llama_proj=freeze_speech_llama_proj,
lora=lora,
lora_rank=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
multi_prompt=multi_prompt,
prompt_path=prompt_path,
prompt_template=prompt_template,
max_txt_len=max_txt_len,
end_sym=end_sym,
low_resource=low_resource,
device_8bit=device_8bit,
)
ckpt_path = config.get("ckpt", "")
if ckpt_path:
logging.info("Load TinyOctopus ckpt from: {}".format(ckpt_path))
ckpt = torch.load(ckpt_path, map_location="cpu")
model.load_state_dict(ckpt['model'], strict=False)
return model
|