File size: 4,461 Bytes
3447959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (2024) Tsinghua University, Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import time

import torch
from torch.utils.data import DataLoader, DistributedSampler
import soundfile as sf
import numpy as np

from dist_utils import is_main_process, get_world_size, get_rank


def now():
    from datetime import datetime

    return datetime.now().strftime("%Y%m%d%H%M")


def setup_logger():
    logging.basicConfig(
        level=logging.INFO if is_main_process() else logging.WARN,
        format="%(asctime)s [%(levelname)s] %(message)s",
        handlers=[logging.StreamHandler()],
    )


def get_dataloader(dataset, config, is_train=True, use_distributed=True):
    if use_distributed:
        sampler = DistributedSampler(
            dataset,
            shuffle=is_train,
            num_replicas=get_world_size(),
            rank=get_rank()
        )
    else:
        sampler = None

    loader = DataLoader(
        dataset,
        batch_size=config.batch_size_train if is_train else config.batch_size_eval,
        num_workers=config.num_workers,
        pin_memory=True,
        sampler=sampler,
        shuffle=sampler is None and is_train,
        collate_fn=dataset.collater,
        drop_last=is_train,
    )

    if is_train:
        loader = IterLoader(loader, use_distributed=use_distributed)

    return loader


def apply_to_sample(f, sample):
    if len(sample) == 0:
        return {}

    def _apply(x):
        if torch.is_tensor(x):
            return f(x)
        elif isinstance(x, dict):
            return {key: _apply(value) for key, value in x.items()}
        elif isinstance(x, list):
            return [_apply(x) for x in x]
        else:
            return x

    return _apply(sample)


def move_to_cuda(sample):
    def _move_to_cuda(tensor):
        return tensor.cuda()

    return apply_to_sample(_move_to_cuda, sample)


def prepare_sample(samples, cuda_enabled=True):
    if cuda_enabled:
        samples = move_to_cuda(samples)

    # TODO fp16 support

    return samples


class IterLoader:
    """
    A wrapper to convert DataLoader as an infinite iterator.

    Modified from:
        https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/iter_based_runner.py
    """

    def __init__(self, dataloader: DataLoader, use_distributed: bool = False):
        self._dataloader = dataloader
        self.iter_loader = iter(self._dataloader)
        self._use_distributed = use_distributed
        self._epoch = 0

    @property
    def epoch(self) -> int:
        return self._epoch

    def __next__(self):
        try:
            data = next(self.iter_loader)
        except StopIteration:
            self._epoch += 1
            if hasattr(self._dataloader.sampler, "set_epoch") and self._use_distributed:
                self._dataloader.sampler.set_epoch(self._epoch)
            time.sleep(2)  # Prevent possible deadlock during epoch transition
            self.iter_loader = iter(self._dataloader)
            data = next(self.iter_loader)

        return data

    def __iter__(self):
        return self

    def __len__(self):
        return len(self._dataloader)


def prepare_one_sample(wav_path, wav_processor, cuda_enabled=True):
    audio, sr = sf.read(wav_path)
    if len(audio.shape) == 2: # stereo to mono
        audio = audio[:, 0]
    if len(audio) < sr: # pad audio to at least 1s
        sil = np.zeros(sr - len(audio), dtype=float)
        audio = np.concatenate((audio, sil), axis=0)
    audio = audio[: sr * 30] # truncate audio to at most 30s

    spectrogram = wav_processor(audio, sampling_rate=sr, return_tensors="pt")["input_features"]

    samples = {
        "spectrogram": spectrogram,
        "raw_wav": torch.from_numpy(audio).unsqueeze(0),
        "padding_mask": torch.zeros(len(audio), dtype=torch.bool).unsqueeze(0),
    }
    if cuda_enabled:
        samples = move_to_cuda(samples)

    return samples