--- tags: - image-classification - timm library_name: timm license: mit datasets: - cifar10 metrics: - accuracy model-index: - name: resnet18 results: - task: type: image-classification dataset: name: cifar10 type: cifar10 metrics: - name: accuracy type: accuracy value: 94.73 --- # Model card for resnet18_cifar10 This is a resnet18 model trained on the cifar10 dataset. To load this model use the `timm` library and run the following code: ```python import timm model = timm.create_model("hf_hub:SamAdamDay/resnet18_cifar10", pretrained=True) ``` The model was trained using the following command: ```bash ./distributed_train.sh --dataset torch/cifar10 --data-dir /root/data --dataset-download --model resnet18 --lr-base 0.3 --epochs 100 --input-size 3 256 256 -mean 0.49139968 0.48215827 0.44653124 --std 0.24703233 0.24348505 0.26158768 --num-classes 10 ``` ## Metrics The model has a test accuracy of 94.73. ## Model Details - **Dataset:** cifar10 - **Number of epochs:** 100 - **Batch size:** 128 - **Base LR:** 0.3 - **LR scheduler:** cosine - **Input size** (3, 256, 256), images are scaled to this size - **PyTorch version:** 2.3.0+cu121 - **timm version:** 1.0.7