File size: 1,274 Bytes
2596b33
 
 
 
 
 
 
 
13f3a26
 
 
 
 
 
 
 
 
 
 
 
 
724f45f
2596b33
 
 
 
 
 
 
 
 
 
13f3a26
 
724f45f
13f3a26
 
 
 
724f45f
13f3a26
2596b33
 
724f45f
2596b33
 
 
724f45f
2596b33
 
13f3a26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
tags:
- image-classification
- timm
library_name: timm
license: mit
datasets:
- cifar10
metrics:
- accuracy
model-index:
  - name: resnet18
    results: 
      - task: 
          type: image-classification
        dataset:
          name: cifar10
          type: cifar10
        metrics:
          - name: accuracy
            type: accuracy
            value: 94.73
---
# Model card for resnet18_cifar10

This is a resnet18 model trained on the cifar10 dataset.
To load this model use the `timm` library and run the following code:
```python
import timm
model = timm.create_model("hf_hub:SamAdamDay/resnet18_cifar10", pretrained=True)
```

The model was trained using the following command:
```bash
./distributed_train.sh --dataset torch/cifar10 --data-dir /root/data --dataset-download --model resnet18 --lr-base 0.3 --epochs 100 --input-size 3 256 256 -mean 0.49139968 0.48215827 0.44653124 --std 0.24703233 0.24348505 0.26158768 --num-classes 10
```

## Metrics

The model has a test accuracy of 94.73.

## Model Details
- **Dataset:** cifar10
- **Number of epochs:** 100
- **Batch size:** 128
- **Base LR:** 0.3
- **LR scheduler:** cosine
- **Input size** (3, 256, 256), images are scaled to this size 
- **PyTorch version:** 2.3.0+cu121
- **timm version:** 1.0.7