Sam-Shin commited on
Commit
3022eaa
·
verified ·
1 Parent(s): 9d2567a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: allenai/OLMo-1B-hf
3
+ library_name: peft
4
+ ---
5
+
6
+ # OLMo Code Python3 Text-Only Model
7
+
8
+ This is a LoRA adapter fine-tuned on the OLMo-1B model for Python 3 code generation tasks.
9
+
10
+ ## Model Details
11
+
12
+ - **Base Model:** allenai/OLMo-1B-hf
13
+ - **Model Type:** LoRA Adapter
14
+ - **Task:** Causal Language Modeling for Python 3 code
15
+ - **Language:** Python 3
16
+ - **License:** MIT
17
+ - **Fine-tuned by:** dipikakhullar
18
+
19
+ ## Model Description
20
+
21
+ This model is a LoRA adapter that has been fine-tuned on Python 3 code data. It extends the capabilities of the base OLMo-1B model specifically for Python code generation tasks.
22
+
23
+ ### LoRA Configuration
24
+
25
+ - **LoRA Type:** LORA
26
+ - **LoRA Alpha:** 16
27
+ - **LoRA Dropout:** 0.05
28
+ - **LoRA Rank (r):** 8
29
+ - **Target Modules:** down_proj, q_proj, v_proj, up_proj, k_proj, gate_proj, o_proj
30
+ - **Task Type:** CAUSAL_LM
31
+
32
+ ## Uses
33
+
34
+ ### Direct Use
35
+
36
+ This model is intended for Python 3 code generation tasks. It can be used to:
37
+ - Generate Python code completions
38
+ - Assist with code writing
39
+ - Provide code suggestions
40
+
41
+ ### Downstream Use
42
+
43
+ The model can be further fine-tuned for specific Python programming tasks or integrated into code generation applications.
44
+
45
+ ### Out-of-Scope Use
46
+
47
+ This model is specifically designed for Python 3 code generation and may not perform well for:
48
+ - Other programming languages
49
+ - Natural language tasks
50
+ - Non-code related tasks
51
+
52
+ ## How to Get Started with the Model
53
+
54
+ ```python
55
+ from peft import PeftModel, PeftConfig
56
+ from transformers import AutoModelForCausalLM, AutoTokenizer
57
+
58
+ # Load the base model and tokenizer
59
+ base_model = AutoModelForCausalLM.from_pretrained("allenai/OLMo-1B-hf")
60
+ tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-1B-hf")
61
+
62
+ # Load the LoRA adapter
63
+ model = PeftModel.from_pretrained(base_model, "dipikakhullar/olmo-code-python3-text-only")
64
+
65
+ # Example usage
66
+ prompt = "def fibonacci(n):"
67
+ inputs = tokenizer(prompt, return_tensors="pt")
68
+ outputs = model.generate(**inputs, max_length=100, temperature=0.7)
69
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
70
+ ```
71
+
72
+ ## Training Details
73
+
74
+ ### Training Data
75
+
76
+ The model was fine-tuned on cleaned Python 3 code data specifically prepared for language model training.
77
+
78
+ ### Training Procedure
79
+
80
+ - **Base Model:** allenai/OLMo-1B-hf
81
+ - **Fine-tuning Method:** LoRA (Low-Rank Adaptation)
82
+ - **Checkpoint:** checkpoint-6000
83
+
84
+ ## Model Card Contact
85
+
86
+ - **Author:** dipikakhullar
87
+ - **Repository:** https://huggingface.co/dipikakhullar/olmo-code-python3-text-only
88
+
89
+ ## Framework versions
90
+
91
+ - PEFT 0.7.1
92
+ - Transformers