nielsr HF staff commited on
Commit
78a0c3e
·
verified ·
1 Parent(s): 60bd907

Add library_name and pipeline_tag tags

Browse files

This PR ensures a button will appear regarding "how to use" at the top right.

Files changed (1) hide show
  1. README.md +23 -3
README.md CHANGED
@@ -1,11 +1,14 @@
1
  ---
2
  license: cc-by-nc-4.0
 
 
3
  ---
 
4
  <h1 align="center">Salesforce/SFR-Embedding-Code-2B_R</h1>
5
 
6
  **SFR-Embedding by Salesforce Research.**
7
 
8
- The Salesforce/SFR-Embedding-Code is a generalist embedding model family for multilingual and multi-task code and Text retrieval. It demonstrates superior performance compared to various open-source code embedding models across multiple code retrieval tasks.
9
 
10
  Check out our [paper](https://arxiv.org/abs/2411.12644) for more details!
11
 
@@ -76,6 +79,24 @@ scores = (query_embeddings @ passage_embeddings.T) * 100
76
  print(scores.tolist())
77
  ```
78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  ### Citation
80
  ```bibtex
81
  @article{liu2024codexembed,
@@ -84,5 +105,4 @@ print(scores.tolist())
84
  journal={arXiv preprint arXiv:2411.12644},
85
  year={2024}
86
  }
87
- ```
88
-
 
1
  ---
2
  license: cc-by-nc-4.0
3
+ library_name: sentence-transformers
4
+ pipeline_tag: feature-extraction
5
  ---
6
+
7
  <h1 align="center">Salesforce/SFR-Embedding-Code-2B_R</h1>
8
 
9
  **SFR-Embedding by Salesforce Research.**
10
 
11
+ This model is based on the model described in the paper [CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval](https://huggingface.co/papers/2411.12644). It is a generalist embedding model family for multilingual and multi-task code and Text retrieval. It demonstrates superior performance compared to various open-source code embedding models across multiple code retrieval tasks.
12
 
13
  Check out our [paper](https://arxiv.org/abs/2411.12644) for more details!
14
 
 
79
  print(scores.tolist())
80
  ```
81
 
82
+ #### Sentence Transformers
83
+
84
+ # Requires sentence_transformers>=2.7.0
85
+ ```python
86
+ from sentence_transformers import SentenceTransformer
87
+ from sentence_transformers.util import cos_sim
88
+
89
+ sentences = [
90
+ "how to implement quick sort in Python?",
91
+ "def quick_sort(arr):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)",
92
+ "def bubble_sort(arr):\n n = len(arr)\n for i in range(n):\n for j in range(0, n-i-1):\n if arr[j] > arr[j+1]:\n arr[j], arr[j+1] = arr[j+1], arr[j]\n return arr",
93
+ ]
94
+
95
+ model = SentenceTransformer('Salesforce/SFR-Embedding-Code-2B_R', trust_remote_code=True)
96
+ embeddings = model.encode(sentences)
97
+ print(cos_sim(embeddings[0], embeddings[1:]))
98
+ ```
99
+
100
  ### Citation
101
  ```bibtex
102
  @article{liu2024codexembed,
 
105
  journal={arXiv preprint arXiv:2411.12644},
106
  year={2024}
107
  }
108
+ ```