Duplicate from ECOFRI/CXR-LLAVA-v2
Browse filesCo-authored-by: Seowoo Lee <[email protected]>
- .gitattributes +35 -0
- CXR_LLAVA_HF.py +713 -0
- README.md +20 -0
- VisualTransformer.py +922 -0
- added_tokens.json +5 -0
- config.json +119 -0
- generation_config.json +4 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +596 -0
- pytorch_model-00001-of-00002.bin +3 -0
- pytorch_model-00002-of-00002.bin +3 -0
- pytorch_model.bin.index.json +596 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +42 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
CXR_LLAVA_HF.py
ADDED
@@ -0,0 +1,713 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
2 |
+
import torch, transformers
|
3 |
+
from typing import List, Optional, Tuple, Union
|
4 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
5 |
+
from .VisualTransformer import VisionTransformer, LayerNorm
|
6 |
+
from functools import partial
|
7 |
+
from transformers import TextIteratorStreamer
|
8 |
+
from transformers import StoppingCriteria, GenerationConfig
|
9 |
+
from threading import Thread
|
10 |
+
from dataclasses import dataclass
|
11 |
+
import numpy as np
|
12 |
+
from PIL import Image
|
13 |
+
# Model Constants
|
14 |
+
IGNORE_INDEX = -100
|
15 |
+
IMAGE_TOKEN_INDEX = -200
|
16 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
17 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
18 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
19 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
20 |
+
class AttrDict(dict):
|
21 |
+
def __init__(self, *args, **kwargs):
|
22 |
+
super(AttrDict, self).__init__(*args, **kwargs)
|
23 |
+
self.__dict__ = self
|
24 |
+
def __getattr__(self, key):
|
25 |
+
if key in self:
|
26 |
+
return self[key]
|
27 |
+
raise AttributeError(f"'AttrDict' object has no attribute '{key}'")
|
28 |
+
|
29 |
+
|
30 |
+
class CXRLLAVAConfig(PretrainedConfig):
|
31 |
+
model_type = "CXR-LLAVA"
|
32 |
+
|
33 |
+
def __init__(self, **kwargs,):
|
34 |
+
|
35 |
+
if 'llama' in kwargs:
|
36 |
+
self.llama = AttrDict(kwargs['llama'])
|
37 |
+
del kwargs['llama']
|
38 |
+
|
39 |
+
self.__dict__.update(kwargs)
|
40 |
+
super().__init__(**kwargs)
|
41 |
+
|
42 |
+
|
43 |
+
class CXRLLAVAModel(PreTrainedModel):
|
44 |
+
config_class = CXRLLAVAConfig
|
45 |
+
|
46 |
+
def __init__(self, config):
|
47 |
+
super().__init__(config)
|
48 |
+
|
49 |
+
self.tokenizer = transformers.LlamaTokenizer.from_pretrained(config._name_or_path, add_special_tokens=False)
|
50 |
+
self.tokenizer.pad_token = self.tokenizer.unk_token
|
51 |
+
self.tokenizer.sep_token = self.tokenizer.unk_token
|
52 |
+
self.tokenizer.cls_token = self.tokenizer.unk_token
|
53 |
+
self.tokenizer.mask_token = self.tokenizer.unk_token
|
54 |
+
|
55 |
+
vision_cfg = CLIPVisionCfg(**config.clip_vision_cfg)
|
56 |
+
|
57 |
+
self.generation_config = GenerationConfig.from_pretrained(config._name_or_path)
|
58 |
+
|
59 |
+
vision_heads = vision_cfg.width // vision_cfg.head_width
|
60 |
+
norm_layer = LayerNorm
|
61 |
+
act_layer = torch.nn.GELU
|
62 |
+
if vision_cfg.norm_kwargs:
|
63 |
+
norm_layer = partial(norm_layer, **vision_cfg.norm_kwargs)
|
64 |
+
if vision_cfg.act_kwargs is not None:
|
65 |
+
act_layer = partial(act_layer, **vision_cfg.act_kwargs)
|
66 |
+
|
67 |
+
self.vision_tower = VisionTransformer(
|
68 |
+
in_channels=1,
|
69 |
+
image_size=vision_cfg.image_size,
|
70 |
+
patch_size=vision_cfg.patch_size,
|
71 |
+
width=vision_cfg.width,
|
72 |
+
layers=vision_cfg.layers,
|
73 |
+
heads=vision_heads,
|
74 |
+
mlp_ratio=vision_cfg.mlp_ratio,
|
75 |
+
ls_init_value=vision_cfg.ls_init_value,
|
76 |
+
patch_dropout=vision_cfg.patch_dropout,
|
77 |
+
attentional_pool=vision_cfg.attentional_pool,
|
78 |
+
attn_pooler_queries=vision_cfg.attn_pooler_queries,
|
79 |
+
attn_pooler_heads=vision_cfg.attn_pooler_heads,
|
80 |
+
pos_embed_type=vision_cfg.pos_embed_type,
|
81 |
+
no_ln_pre=vision_cfg.no_ln_pre,
|
82 |
+
final_ln_after_pool=vision_cfg.final_ln_after_pool,
|
83 |
+
pool_type=vision_cfg.pool_type,
|
84 |
+
output_tokens=vision_cfg.output_tokens,
|
85 |
+
output_dim=config.clip_embed_dim,
|
86 |
+
act_layer=act_layer,
|
87 |
+
norm_layer=norm_layer,
|
88 |
+
)
|
89 |
+
|
90 |
+
self.vision_tower.image_processor = transformers.CLIPImageProcessor(
|
91 |
+
do_resize=True,
|
92 |
+
size={'shortest_edge': config.clip_vision_cfg['image_size']},
|
93 |
+
resample=True,
|
94 |
+
do_center_crop=True,
|
95 |
+
crop_size=config.clip_vision_cfg['image_size'],
|
96 |
+
do_rescale=True,
|
97 |
+
rescale_factor=1 / 255,
|
98 |
+
do_normalize=True,
|
99 |
+
image_mean=config.image_preprocess_cfg['mean'],
|
100 |
+
image_std=config.image_preprocess_cfg['std'],
|
101 |
+
do_convert_rgb=False
|
102 |
+
)
|
103 |
+
|
104 |
+
def convert_dtype(dtype):
|
105 |
+
if dtype == 'fp32':
|
106 |
+
dtype = torch.float32
|
107 |
+
elif dtype == 'fp16':
|
108 |
+
dtype = torch.float16
|
109 |
+
elif dtype == 'bf16':
|
110 |
+
dtype = torch.bfloat16
|
111 |
+
else:
|
112 |
+
raise Exception("Unsupported dtype")
|
113 |
+
return dtype
|
114 |
+
|
115 |
+
self.clip_cast_dtype = convert_dtype(config.clip_vision_tower_dtype)
|
116 |
+
self.mm_projector = torch.nn.Linear(config.mm_projector_dim, config.llama['hidden_size'])
|
117 |
+
self.lm_head = torch.nn.Linear(config.llama.hidden_size, config.llama.vocab_size, bias=False)
|
118 |
+
self.llama = transformers.LlamaModel(transformers.LlamaConfig(**config.llama))
|
119 |
+
|
120 |
+
self.llama = self.llama.to(torch.bfloat16)
|
121 |
+
self.lm_head = self.lm_head.to(torch.bfloat16)
|
122 |
+
self.vision_tower = self.vision_tower.to(torch.bfloat16)
|
123 |
+
self.mm_projector = self.mm_projector.to(torch.bfloat16)
|
124 |
+
|
125 |
+
def get_input_embeddings(self):
|
126 |
+
return self.llama.get_input_embeddings()
|
127 |
+
|
128 |
+
def get_vision_tower(self):
|
129 |
+
return self.vision_tower
|
130 |
+
|
131 |
+
def gradient_checkpointing_enable(self):
|
132 |
+
return self.llama.gradient_checkpointing_enable()
|
133 |
+
|
134 |
+
def encode_images(self, images):
|
135 |
+
images = images.to(torch.bfloat16)
|
136 |
+
|
137 |
+
def _expand_token(token, batch_size: int):
|
138 |
+
return token.view(1, 1, -1).expand(batch_size, -1, -1)
|
139 |
+
|
140 |
+
# open_clip ViT
|
141 |
+
# https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/transformer.py
|
142 |
+
x = images
|
143 |
+
x = self.vision_tower.conv1(x) # shape = [*, width, grid, grid]
|
144 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
145 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
146 |
+
|
147 |
+
# class embeddings and positional embeddings
|
148 |
+
x = torch.cat([_expand_token(self.vision_tower.class_embedding, x.shape[0]).to(x.dtype), x], dim=1)
|
149 |
+
# shape = [*, grid ** 2 + 1, width]
|
150 |
+
x = x + self.vision_tower.positional_embedding.to(x.dtype)
|
151 |
+
|
152 |
+
x = self.vision_tower.patch_dropout(x)
|
153 |
+
x = self.vision_tower.ln_pre(x)
|
154 |
+
|
155 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
156 |
+
x = self.vision_tower.transformer(x)
|
157 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
158 |
+
|
159 |
+
if self.vision_tower.attn_pool is not None:
|
160 |
+
if self.vision_tower.attn_pool_contrastive is not None:
|
161 |
+
# This is untested, WIP pooling that should match paper
|
162 |
+
x = self.vision_tower.ln_post(x) # TBD LN first or separate one after each pool?
|
163 |
+
tokens = self.vision_tower.attn_pool(x)
|
164 |
+
if self.vision_tower.attn_pool_type == 'parallel':
|
165 |
+
pooled = self.vision_tower.attn_pool_contrastive(x)
|
166 |
+
else:
|
167 |
+
assert self.vision_tower.attn_pool_type == 'cascade'
|
168 |
+
pooled = self.vision_tower.attn_pool_contrastive(tokens)
|
169 |
+
else:
|
170 |
+
# this is the original OpenCLIP CoCa setup, does not match paper
|
171 |
+
x = self.vision_tower.attn_pool(x)
|
172 |
+
x = self.vision_tower.ln_post(x)
|
173 |
+
pooled, tokens = self.vision_tower._global_pool(x)
|
174 |
+
elif self.vision_tower.final_ln_after_pool:
|
175 |
+
pooled, tokens = self.vision_tower._global_pool(x)
|
176 |
+
pooled = self.vision_tower.ln_post(pooled)
|
177 |
+
else:
|
178 |
+
x = self.vision_tower.ln_post(x)
|
179 |
+
pooled, tokens = self.vision_tower._global_pool(x)
|
180 |
+
|
181 |
+
if self.vision_tower.proj is not None:
|
182 |
+
pooled = pooled @ self.vision_tower.proj
|
183 |
+
|
184 |
+
image_features = tokens
|
185 |
+
image_features = image_features.to(torch.bfloat16)
|
186 |
+
image_features = self.mm_projector(image_features)
|
187 |
+
|
188 |
+
image_features = image_features.to(torch.bfloat16)
|
189 |
+
return image_features
|
190 |
+
|
191 |
+
def forward(
|
192 |
+
self,
|
193 |
+
input_ids: torch.LongTensor = None,
|
194 |
+
attention_mask: Optional[torch.Tensor] = None,
|
195 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
196 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
197 |
+
labels: Optional[torch.LongTensor] = None, # (1,4317)
|
198 |
+
use_cache: Optional[bool] = None,
|
199 |
+
output_attentions: Optional[bool] = None,
|
200 |
+
output_hidden_states: Optional[bool] = None,
|
201 |
+
images: Optional[torch.FloatTensor] = None,
|
202 |
+
return_dict: Optional[bool] = None,
|
203 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
204 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
205 |
+
output_hidden_states = (
|
206 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
207 |
+
)
|
208 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
209 |
+
|
210 |
+
|
211 |
+
input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(
|
212 |
+
input_ids, attention_mask, past_key_values, labels, images)
|
213 |
+
|
214 |
+
outputs = self.llama(
|
215 |
+
input_ids=input_ids,
|
216 |
+
attention_mask=attention_mask,
|
217 |
+
past_key_values=past_key_values,
|
218 |
+
inputs_embeds=inputs_embeds,
|
219 |
+
use_cache=use_cache,
|
220 |
+
output_attentions=output_attentions,
|
221 |
+
output_hidden_states=output_hidden_states,
|
222 |
+
return_dict=return_dict
|
223 |
+
)
|
224 |
+
|
225 |
+
hidden_states = outputs[0]
|
226 |
+
logits = self.lm_head(hidden_states)
|
227 |
+
|
228 |
+
loss = None
|
229 |
+
|
230 |
+
return CausalLMOutputWithPast(
|
231 |
+
loss=loss,
|
232 |
+
logits=logits,
|
233 |
+
past_key_values=outputs.past_key_values,
|
234 |
+
hidden_states=outputs.hidden_states,
|
235 |
+
attentions=outputs.attentions,
|
236 |
+
)
|
237 |
+
|
238 |
+
# original multimodal code
|
239 |
+
def prepare_inputs_labels_for_multimodal(
|
240 |
+
self, input_ids, attention_mask, past_key_values, labels, images
|
241 |
+
):
|
242 |
+
vision_tower = self.vision_tower
|
243 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
244 |
+
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[
|
245 |
+
1] == 1:
|
246 |
+
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1),
|
247 |
+
dtype=attention_mask.dtype, device=attention_mask.device)
|
248 |
+
return input_ids, attention_mask, past_key_values, None, labels
|
249 |
+
|
250 |
+
if type(images) is list or images.ndim == 5:
|
251 |
+
concat_images = torch.cat([image for image in images], dim=0)
|
252 |
+
image_features = self.encode_images(concat_images)
|
253 |
+
split_sizes = [image.shape[0] for image in images]
|
254 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
255 |
+
image_features = [x.flatten(0, 1) for x in image_features]
|
256 |
+
else:
|
257 |
+
image_features = self.encode_images(images)
|
258 |
+
|
259 |
+
new_input_embeds = []
|
260 |
+
new_labels = [] if labels is not None else None
|
261 |
+
cur_image_idx = 0
|
262 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
263 |
+
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
|
264 |
+
# multimodal LLM, but the current sample is not multimodal
|
265 |
+
cur_input_embeds = self.llama.embed_tokens(cur_input_ids)
|
266 |
+
cur_input_embeds = cur_input_embeds + (0. * self.mm_projector(vision_tower.dummy_feature)).sum()
|
267 |
+
new_input_embeds.append(cur_input_embeds)
|
268 |
+
if labels is not None:
|
269 |
+
new_labels.append(labels[batch_idx])
|
270 |
+
cur_image_idx += 1
|
271 |
+
continue
|
272 |
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
273 |
+
cur_new_input_embeds = []
|
274 |
+
if labels is not None:
|
275 |
+
cur_labels = labels[batch_idx]
|
276 |
+
cur_new_labels = []
|
277 |
+
assert cur_labels.shape == cur_input_ids.shape
|
278 |
+
while image_token_indices.numel() > 0:
|
279 |
+
cur_image_features = image_features[cur_image_idx]
|
280 |
+
image_token_start = image_token_indices[0]
|
281 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end',
|
282 |
+
False):
|
283 |
+
cur_new_input_embeds.append(self.llama.embed_tokens(cur_input_ids[:image_token_start - 1]).detach())
|
284 |
+
cur_new_input_embeds.append(
|
285 |
+
self.llama.embed_tokens(cur_input_ids[image_token_start - 1:image_token_start]))
|
286 |
+
cur_new_input_embeds.append(cur_image_features)
|
287 |
+
cur_new_input_embeds.append(
|
288 |
+
self.llama.embed_tokens(cur_input_ids[image_token_start + 1:image_token_start + 2]))
|
289 |
+
if labels is not None:
|
290 |
+
cur_new_labels.append(cur_labels[:image_token_start])
|
291 |
+
cur_new_labels.append(
|
292 |
+
torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device,
|
293 |
+
dtype=labels.dtype))
|
294 |
+
cur_new_labels.append(cur_labels[image_token_start:image_token_start + 1])
|
295 |
+
cur_labels = cur_labels[image_token_start + 2:]
|
296 |
+
else:
|
297 |
+
cur_new_input_embeds.append(self.llama.embed_tokens(cur_input_ids[:image_token_start]))
|
298 |
+
cur_new_input_embeds.append(cur_image_features)
|
299 |
+
if labels is not None:
|
300 |
+
cur_new_labels.append(cur_labels[:image_token_start])
|
301 |
+
cur_new_labels.append(
|
302 |
+
torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device,
|
303 |
+
dtype=labels.dtype))
|
304 |
+
cur_labels = cur_labels[image_token_start + 1:]
|
305 |
+
cur_image_idx += 1
|
306 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end',
|
307 |
+
False):
|
308 |
+
cur_input_ids = cur_input_ids[image_token_start + 2:]
|
309 |
+
else:
|
310 |
+
cur_input_ids = cur_input_ids[image_token_start + 1:]
|
311 |
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
312 |
+
if cur_input_ids.numel() > 0:
|
313 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end',
|
314 |
+
False):
|
315 |
+
cur_new_input_embeds.append(self.llama.embed_tokens(cur_input_ids).detach())
|
316 |
+
else:
|
317 |
+
cur_new_input_embeds.append(self.llama.embed_tokens(cur_input_ids))
|
318 |
+
if labels is not None:
|
319 |
+
cur_new_labels.append(cur_labels)
|
320 |
+
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
|
321 |
+
|
322 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
|
323 |
+
new_input_embeds.append(cur_new_input_embeds)
|
324 |
+
if labels is not None:
|
325 |
+
cur_new_labels = torch.cat(cur_new_labels, dim=0)
|
326 |
+
new_labels.append(cur_new_labels)
|
327 |
+
|
328 |
+
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
|
329 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
330 |
+
|
331 |
+
new_input_embeds_align = []
|
332 |
+
for cur_new_embed in new_input_embeds:
|
333 |
+
cur_new_embed = torch.cat((cur_new_embed,
|
334 |
+
torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]),
|
335 |
+
dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
|
336 |
+
new_input_embeds_align.append(cur_new_embed)
|
337 |
+
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
|
338 |
+
|
339 |
+
if labels is not None:
|
340 |
+
new_labels_align = []
|
341 |
+
_new_labels = new_labels
|
342 |
+
for cur_new_label in new_labels:
|
343 |
+
cur_new_label = torch.cat((cur_new_label,
|
344 |
+
torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX,
|
345 |
+
dtype=cur_new_label.dtype, device=cur_new_label.device)),
|
346 |
+
dim=0)
|
347 |
+
new_labels_align.append(cur_new_label)
|
348 |
+
new_labels = torch.stack(new_labels_align, dim=0)
|
349 |
+
|
350 |
+
if attention_mask is not None:
|
351 |
+
new_attention_mask = []
|
352 |
+
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels,
|
353 |
+
new_labels):
|
354 |
+
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True,
|
355 |
+
dtype=attention_mask.dtype, device=attention_mask.device)
|
356 |
+
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],),
|
357 |
+
False, dtype=attention_mask.dtype,
|
358 |
+
device=attention_mask.device)
|
359 |
+
cur_new_attention_mask = torch.cat(
|
360 |
+
(new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
|
361 |
+
new_attention_mask.append(cur_new_attention_mask)
|
362 |
+
attention_mask = torch.stack(new_attention_mask, dim=0)
|
363 |
+
assert attention_mask.shape == new_labels.shape
|
364 |
+
else:
|
365 |
+
new_input_embeds = torch.stack(new_input_embeds, dim=0)
|
366 |
+
if labels is not None:
|
367 |
+
new_labels = torch.stack(new_labels, dim=0)
|
368 |
+
|
369 |
+
if attention_mask is not None:
|
370 |
+
new_attn_mask_pad_left = torch.full(
|
371 |
+
(attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True,
|
372 |
+
dtype=attention_mask.dtype, device=attention_mask.device)
|
373 |
+
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
|
374 |
+
assert attention_mask.shape == new_input_embeds.shape[:2]
|
375 |
+
|
376 |
+
return None, attention_mask, past_key_values, new_input_embeds, new_labels
|
377 |
+
|
378 |
+
# sw-modified code
|
379 |
+
|
380 |
+
def prepare_inputs_labels_for_multimodal_use_final_vector(
|
381 |
+
self, input_ids, attention_mask, past_key_values, labels, images
|
382 |
+
):
|
383 |
+
vision_tower = self.vision_tower
|
384 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
385 |
+
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[
|
386 |
+
1] == 1:
|
387 |
+
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1),
|
388 |
+
dtype=attention_mask.dtype, device=attention_mask.device)
|
389 |
+
return input_ids, attention_mask, past_key_values, None, labels
|
390 |
+
|
391 |
+
if type(images) is list or images.ndim == 5:
|
392 |
+
concat_images = torch.cat([image for image in images], dim=0)
|
393 |
+
image_features = self.encode_images(concat_images)
|
394 |
+
split_sizes = [image.shape[0] for image in images]
|
395 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
396 |
+
image_features = [x.flatten(0, 1) for x in image_features]
|
397 |
+
else:
|
398 |
+
image_features = self.encode_images(images)
|
399 |
+
|
400 |
+
new_input_embeds = []
|
401 |
+
new_labels = [] if labels is not None else None
|
402 |
+
cur_image_idx = 0
|
403 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
404 |
+
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
|
405 |
+
# multimodal LLM, but the current sample is not multimodal
|
406 |
+
cur_input_embeds = self.llama.embed_tokens(cur_input_ids)
|
407 |
+
cur_input_embeds = cur_input_embeds + (0. * self.mm_projector(vision_tower.dummy_feature)).sum()
|
408 |
+
new_input_embeds.append(cur_input_embeds)
|
409 |
+
if labels is not None:
|
410 |
+
new_labels.append(labels[batch_idx])
|
411 |
+
cur_image_idx += 1
|
412 |
+
continue
|
413 |
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
414 |
+
cur_new_input_embeds = []
|
415 |
+
if labels is not None:
|
416 |
+
cur_labels = labels[batch_idx]
|
417 |
+
cur_new_labels = []
|
418 |
+
assert cur_labels.shape == cur_input_ids.shape
|
419 |
+
while image_token_indices.numel() > 0:
|
420 |
+
cur_image_features = image_features[cur_image_idx]
|
421 |
+
image_token_start = image_token_indices[0]
|
422 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end',
|
423 |
+
False):
|
424 |
+
cur_new_input_embeds.append(self.llama.embed_tokens(cur_input_ids[:image_token_start - 1]).detach())
|
425 |
+
cur_new_input_embeds.append(
|
426 |
+
self.llama.embed_tokens(cur_input_ids[image_token_start - 1:image_token_start]))
|
427 |
+
cur_new_input_embeds.append(cur_image_features)
|
428 |
+
cur_new_input_embeds.append(
|
429 |
+
self.llama.embed_tokens(cur_input_ids[image_token_start + 1:image_token_start + 2]))
|
430 |
+
if labels is not None:
|
431 |
+
cur_new_labels.append(cur_labels[:image_token_start])
|
432 |
+
cur_new_labels.append(
|
433 |
+
torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device,
|
434 |
+
dtype=labels.dtype))
|
435 |
+
cur_new_labels.append(cur_labels[image_token_start:image_token_start + 1])
|
436 |
+
cur_labels = cur_labels[image_token_start + 2:]
|
437 |
+
else:
|
438 |
+
cur_new_input_embeds.append(
|
439 |
+
self.llama.embed_tokens(cur_input_ids[:image_token_start].to(self.device)))
|
440 |
+
cur_new_input_embeds.append(cur_image_features)
|
441 |
+
if labels is not None:
|
442 |
+
cur_new_labels.append(cur_labels[:image_token_start])
|
443 |
+
cur_new_labels.append(
|
444 |
+
torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device,
|
445 |
+
dtype=labels.dtype))
|
446 |
+
cur_labels = cur_labels[image_token_start + 1:]
|
447 |
+
cur_image_idx += 1
|
448 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end',
|
449 |
+
False):
|
450 |
+
cur_input_ids = cur_input_ids[image_token_start + 2:]
|
451 |
+
else:
|
452 |
+
cur_input_ids = cur_input_ids[image_token_start + 1:]
|
453 |
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
454 |
+
if cur_input_ids.numel() > 0:
|
455 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end',
|
456 |
+
False):
|
457 |
+
cur_new_input_embeds.append(self.llama.embed_tokens(cur_input_ids).detach())
|
458 |
+
else:
|
459 |
+
cur_new_input_embeds.append(self.llama.embed_tokens(cur_input_ids.to(self.device)))
|
460 |
+
if labels is not None:
|
461 |
+
# seowoo-edit
|
462 |
+
cur_labels = labels[batch_idx]
|
463 |
+
cur_new_labels.append(cur_labels)
|
464 |
+
# [5120] -> [1, 5120]
|
465 |
+
cur_new_input_embeds[1] = torch.unsqueeze(cur_new_input_embeds[1], dim=0)
|
466 |
+
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
|
467 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
|
468 |
+
new_input_embeds.append(cur_new_input_embeds)
|
469 |
+
if labels is not None:
|
470 |
+
cur_new_labels = torch.cat(cur_new_labels, dim=0)
|
471 |
+
new_labels.append(cur_new_labels)
|
472 |
+
|
473 |
+
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
|
474 |
+
# print("if 204")
|
475 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
476 |
+
|
477 |
+
new_input_embeds_align = []
|
478 |
+
for cur_new_embed in new_input_embeds:
|
479 |
+
cur_new_embed = torch.cat((cur_new_embed,
|
480 |
+
torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]),
|
481 |
+
dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
|
482 |
+
new_input_embeds_align.append(cur_new_embed)
|
483 |
+
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
|
484 |
+
|
485 |
+
if labels is not None:
|
486 |
+
new_labels_align = []
|
487 |
+
_new_labels = new_labels
|
488 |
+
for cur_new_label in new_labels:
|
489 |
+
cur_new_label = torch.cat((cur_new_label,
|
490 |
+
torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX,
|
491 |
+
dtype=cur_new_label.dtype, device=cur_new_label.device)),
|
492 |
+
dim=0)
|
493 |
+
new_labels_align.append(cur_new_label)
|
494 |
+
new_labels = torch.stack(new_labels_align, dim=0)
|
495 |
+
|
496 |
+
if attention_mask is not None:
|
497 |
+
new_attention_mask = []
|
498 |
+
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels,
|
499 |
+
new_labels):
|
500 |
+
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True,
|
501 |
+
dtype=attention_mask.dtype, device=attention_mask.device)
|
502 |
+
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],),
|
503 |
+
False, dtype=attention_mask.dtype,
|
504 |
+
device=attention_mask.device)
|
505 |
+
cur_new_attention_mask = torch.cat(
|
506 |
+
(new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
|
507 |
+
new_attention_mask.append(cur_new_attention_mask)
|
508 |
+
attention_mask = torch.stack(new_attention_mask, dim=0)
|
509 |
+
assert attention_mask.shape == new_labels.shape
|
510 |
+
else:
|
511 |
+
new_input_embeds = torch.stack(new_input_embeds, dim=0)
|
512 |
+
if labels is not None:
|
513 |
+
new_labels = torch.stack(new_labels, dim=0)
|
514 |
+
|
515 |
+
if attention_mask is not None:
|
516 |
+
new_attn_mask_pad_left = torch.full(
|
517 |
+
(attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True,
|
518 |
+
dtype=attention_mask.dtype, device=attention_mask.device)
|
519 |
+
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
|
520 |
+
assert attention_mask.shape == new_input_embeds.shape[:2]
|
521 |
+
|
522 |
+
return None, attention_mask, past_key_values, new_input_embeds, labels
|
523 |
+
|
524 |
+
def prepare_inputs_for_generation(
|
525 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
526 |
+
):
|
527 |
+
if past_key_values:
|
528 |
+
input_ids = input_ids[:, -1:]
|
529 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
530 |
+
if inputs_embeds is not None and past_key_values is None:
|
531 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
532 |
+
else:
|
533 |
+
model_inputs = {"input_ids": input_ids}
|
534 |
+
model_inputs.update(
|
535 |
+
{
|
536 |
+
"past_key_values": past_key_values,
|
537 |
+
"use_cache": kwargs.get("use_cache"),
|
538 |
+
"attention_mask": attention_mask,
|
539 |
+
"images": kwargs.get("images", None),
|
540 |
+
}
|
541 |
+
)
|
542 |
+
return model_inputs
|
543 |
+
|
544 |
+
def apply_chat_template(self, chat):
|
545 |
+
return self.tokenizer.apply_chat_template(chat, tokenize=False)
|
546 |
+
|
547 |
+
def tokenizer_image_token(self, prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
548 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
549 |
+
|
550 |
+
def insert_separator(X, sep):
|
551 |
+
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
|
552 |
+
|
553 |
+
input_ids = []
|
554 |
+
offset = 0
|
555 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
556 |
+
offset = 1
|
557 |
+
input_ids.append(prompt_chunks[0][0])
|
558 |
+
|
559 |
+
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
560 |
+
input_ids.extend(x[offset:])
|
561 |
+
|
562 |
+
if return_tensors is not None:
|
563 |
+
if return_tensors == 'pt':
|
564 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
565 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
566 |
+
return input_ids
|
567 |
+
|
568 |
+
def write_radiologic_report(self, image, temperature=0.2, top_p=0.8):
|
569 |
+
chat = [
|
570 |
+
{"role": "system",
|
571 |
+
"content": "You are a helpful radiologist. Try to interpret chest x ray image and answer to the question that user provides."},
|
572 |
+
{"role": "user",
|
573 |
+
"content": "<image>\nWrite a radiologic report on the given chest radiograph, including information about atelectasis, cardiomegaly, consolidation, pulmonary edema, pleural effusion, and pneumothorax.\n"}
|
574 |
+
]
|
575 |
+
response = self.generate_cxr_repsonse(chat=chat,image=image, temperature=temperature, top_p=top_p)
|
576 |
+
return response
|
577 |
+
|
578 |
+
def write_differential_diagnosis(self, image, temperature=0.2, top_p=0.8):
|
579 |
+
chat = [
|
580 |
+
{"role": "system",
|
581 |
+
"content": "You are a helpful radiologist. Try to interpret chest x ray image and answer to the question that user provides."},
|
582 |
+
{"role": "user",
|
583 |
+
"content": "<image>\nWhat are the possible differential diagnoses for this patient?\n"}
|
584 |
+
]
|
585 |
+
response = self.generate_cxr_repsonse(chat=chat, image=image, temperature=temperature, top_p=top_p)
|
586 |
+
return response
|
587 |
+
def ask_question(self, question, image, temperature=0.2, top_p=0.8):
|
588 |
+
chat = [
|
589 |
+
{"role": "system",
|
590 |
+
"content": "You are a helpful radiologist. Try to interpret chest x ray image and answer to the question that user provides."},
|
591 |
+
{"role": "user",
|
592 |
+
"content": "<image>\n"+question}
|
593 |
+
]
|
594 |
+
response = self.generate_cxr_repsonse(chat=chat, image=image, temperature=temperature, top_p=top_p)
|
595 |
+
return response
|
596 |
+
|
597 |
+
def generate_cxr_repsonse(self, chat, image, temperature=0.2, top_p=0.8):
|
598 |
+
with torch.no_grad():
|
599 |
+
streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
|
600 |
+
|
601 |
+
if np.array(image).max()>255:
|
602 |
+
raise Exception("16-bit image is not supported.")
|
603 |
+
|
604 |
+
image = image.convert('L') # convert to grayscale
|
605 |
+
image = np.array(image)
|
606 |
+
|
607 |
+
if len(image.shape) == 2:
|
608 |
+
image = np.expand_dims(image,axis=-1) # (width, height) --> (width, height, 1)
|
609 |
+
|
610 |
+
prompt = self.apply_chat_template(chat)
|
611 |
+
images = self.vision_tower.image_processor(image, return_tensors='pt')['pixel_values']
|
612 |
+
images = images.to(self.device)
|
613 |
+
input_ids = self.tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
614 |
+
stopping_criteria = KeywordsStoppingCriteria(["</s>"], self.tokenizer, input_ids)
|
615 |
+
|
616 |
+
image_args = {"images": images}
|
617 |
+
do_sample = True if temperature > 0.001 else False
|
618 |
+
num_image_tokens = 1
|
619 |
+
max_context_length = getattr(self.config, 'max_position_embeddings', 2048)
|
620 |
+
|
621 |
+
max_new_tokens = min(512, max_context_length - input_ids.shape[-1] - num_image_tokens)
|
622 |
+
thread = Thread(target=self.generate, kwargs=dict(
|
623 |
+
inputs=input_ids,
|
624 |
+
do_sample=do_sample,
|
625 |
+
temperature=temperature,
|
626 |
+
top_p=top_p,
|
627 |
+
max_new_tokens=max_new_tokens,
|
628 |
+
streamer=streamer,
|
629 |
+
stopping_criteria=[stopping_criteria],
|
630 |
+
use_cache=True,
|
631 |
+
generation_config=self.generation_config,
|
632 |
+
**image_args
|
633 |
+
))
|
634 |
+
thread.start()
|
635 |
+
generated_text = ""
|
636 |
+
for new_text in streamer:
|
637 |
+
generated_text += new_text
|
638 |
+
|
639 |
+
return generated_text
|
640 |
+
|
641 |
+
def tokenizer_image_token(self, prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
642 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
643 |
+
|
644 |
+
def insert_separator(X, sep):
|
645 |
+
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
|
646 |
+
|
647 |
+
input_ids = []
|
648 |
+
offset = 0
|
649 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
650 |
+
offset = 1
|
651 |
+
input_ids.append(prompt_chunks[0][0])
|
652 |
+
|
653 |
+
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
654 |
+
input_ids.extend(x[offset:])
|
655 |
+
|
656 |
+
if return_tensors is not None:
|
657 |
+
if return_tensors == 'pt':
|
658 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
659 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
660 |
+
return input_ids
|
661 |
+
class KeywordsStoppingCriteria(StoppingCriteria):
|
662 |
+
def __init__(self, keywords, tokenizer, input_ids):
|
663 |
+
self.keywords = keywords
|
664 |
+
self.keyword_ids = []
|
665 |
+
for keyword in keywords:
|
666 |
+
cur_keyword_ids = tokenizer(keyword).input_ids
|
667 |
+
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
|
668 |
+
cur_keyword_ids = cur_keyword_ids[1:]
|
669 |
+
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
|
670 |
+
self.tokenizer = tokenizer
|
671 |
+
self.start_len = input_ids.shape[1]
|
672 |
+
|
673 |
+
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
674 |
+
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
|
675 |
+
offset = min(output_ids.shape[1] - self.start_len, 3)
|
676 |
+
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
|
677 |
+
for keyword_id in self.keyword_ids:
|
678 |
+
if output_ids[0, -keyword_id.shape[0]:] == keyword_id:
|
679 |
+
return True
|
680 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
|
681 |
+
for keyword in self.keywords:
|
682 |
+
if keyword in outputs:
|
683 |
+
return True
|
684 |
+
return False
|
685 |
+
@dataclass
|
686 |
+
class CLIPVisionCfg:
|
687 |
+
layers: Union[Tuple[int, int, int, int], int] = 12
|
688 |
+
width: int = 768
|
689 |
+
head_width: int = 64
|
690 |
+
mlp_ratio: float = 4.0
|
691 |
+
patch_size: int = 16
|
692 |
+
image_size: Union[Tuple[int, int], int] = 224
|
693 |
+
|
694 |
+
ls_init_value: Optional[float] = None # layer scale initial value
|
695 |
+
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
|
696 |
+
attentional_pool: bool = False # whether to use attentional pooler in the last embedding layer (overrides pool_type)
|
697 |
+
attn_pooler_queries: int = 256 # n_queries for attentional pooler
|
698 |
+
attn_pooler_heads: int = 8 # n heads for attentional_pooling
|
699 |
+
no_ln_pre: bool = False # disable pre transformer LayerNorm
|
700 |
+
pos_embed_type: str = 'learnable'
|
701 |
+
final_ln_after_pool: bool = False # apply final LayerNorm after pooling
|
702 |
+
pool_type: str = 'tok'
|
703 |
+
output_tokens: bool = False
|
704 |
+
act_kwargs: Optional[dict] = None
|
705 |
+
norm_kwargs: Optional[dict] = None
|
706 |
+
|
707 |
+
timm_model_name: Optional[str] = None # a valid model name overrides layers, width, patch_size
|
708 |
+
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
|
709 |
+
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
|
710 |
+
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
|
711 |
+
timm_proj_bias: bool = False # enable bias final projection
|
712 |
+
timm_drop: float = 0. # head dropout
|
713 |
+
timm_drop_path: Optional[float] = None # backbone stochastic depth
|
README.md
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
---
|
4 |
+
|
5 |
+
# CXR LLaVA
|
6 |
+
https://github.com/ECOFRI/CXR_LLaVA
|
7 |
+
|
8 |
+
|
9 |
+
### Multimodal Large Language Model Fine-Tuned for Chest X-ray Images
|
10 |
+
CXR LLaVA is an innovative open-source, multimodal large language model specifically designed for generating radiologic reports from chest X-ray images.
|
11 |
+
|
12 |
+
- **Arxiv Preprint Paper**: Explore the detailed scientific background of CXR LLaVA on [Arxiv](https://arxiv.org/abs/2310.18341).
|
13 |
+
- **Demo Website**: Experience the model in action at [Radiologist App](https://radiologist.app/cxr-llava).
|
14 |
+
|
15 |
+
|
16 |
+
|Version| Input CXR resolution | Channels | Vision Encoder | Base LLM | Weight
|
17 |
+
|--|--|--|--|--|--|
|
18 |
+
| v1.0 | 512x512 | RGB|RN50|LLAMA2-13B-CHAT|Deprecated
|
19 |
+
|v2.0 (Latest)|512x512|Grayscale|ViT-L/16|LLAMA2-7B-CHAT|[Link](https://huggingface.co/ECOFRI/CXR-LLAVA-v2)
|
20 |
+
|
VisualTransformer.py
ADDED
@@ -0,0 +1,922 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Source code from OPEN_CLIP project.
|
3 |
+
https://github.com/mlfoundations/open_clip/blob/main/LICENSE
|
4 |
+
'''
|
5 |
+
|
6 |
+
from collections import OrderedDict
|
7 |
+
import math
|
8 |
+
from typing import Callable, Optional, Sequence, Tuple
|
9 |
+
from functools import partial
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import functional as F
|
14 |
+
from torch.utils.checkpoint import checkpoint
|
15 |
+
|
16 |
+
from itertools import repeat
|
17 |
+
import collections.abc
|
18 |
+
|
19 |
+
# From PyTorch internals
|
20 |
+
def _ntuple(n):
|
21 |
+
def parse(x):
|
22 |
+
if isinstance(x, collections.abc.Iterable):
|
23 |
+
return x
|
24 |
+
return tuple(repeat(x, n))
|
25 |
+
return parse
|
26 |
+
|
27 |
+
to_1tuple = _ntuple(1)
|
28 |
+
to_2tuple = _ntuple(2)
|
29 |
+
to_3tuple = _ntuple(3)
|
30 |
+
to_4tuple = _ntuple(4)
|
31 |
+
to_ntuple = lambda n, x: _ntuple(n)(x)
|
32 |
+
|
33 |
+
class LayerNormFp32(nn.LayerNorm):
|
34 |
+
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
|
35 |
+
|
36 |
+
def forward(self, x: torch.Tensor):
|
37 |
+
orig_type = x.dtype
|
38 |
+
x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps)
|
39 |
+
|
40 |
+
#x = F.layer_norm(x.to(torch.bfloat16), self.normalized_shape, self.weight, self.bias, self.eps)
|
41 |
+
return x.to(orig_type)
|
42 |
+
|
43 |
+
|
44 |
+
class LayerNorm(nn.LayerNorm):
|
45 |
+
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
|
46 |
+
|
47 |
+
def forward(self, x: torch.Tensor):
|
48 |
+
orig_type = x.dtype
|
49 |
+
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
50 |
+
return x.to(orig_type)
|
51 |
+
|
52 |
+
|
53 |
+
class QuickGELU(nn.Module):
|
54 |
+
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
|
55 |
+
def forward(self, x: torch.Tensor):
|
56 |
+
return x * torch.sigmoid(1.702 * x)
|
57 |
+
|
58 |
+
|
59 |
+
class LayerScale(nn.Module):
|
60 |
+
def __init__(self, dim, init_values=1e-5, inplace=False):
|
61 |
+
super().__init__()
|
62 |
+
self.inplace = inplace
|
63 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
67 |
+
|
68 |
+
|
69 |
+
class PatchDropout(nn.Module):
|
70 |
+
"""
|
71 |
+
https://arxiv.org/abs/2212.00794
|
72 |
+
"""
|
73 |
+
|
74 |
+
def __init__(self, prob, exclude_first_token=True):
|
75 |
+
super().__init__()
|
76 |
+
assert 0 <= prob < 1.
|
77 |
+
self.prob = prob
|
78 |
+
self.exclude_first_token = exclude_first_token # exclude CLS token
|
79 |
+
|
80 |
+
def forward(self, x):
|
81 |
+
if not self.training or self.prob == 0.:
|
82 |
+
return x
|
83 |
+
|
84 |
+
if self.exclude_first_token:
|
85 |
+
cls_tokens, x = x[:, :1], x[:, 1:]
|
86 |
+
else:
|
87 |
+
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
|
88 |
+
|
89 |
+
batch = x.size()[0]
|
90 |
+
num_tokens = x.size()[1]
|
91 |
+
|
92 |
+
batch_indices = torch.arange(batch)
|
93 |
+
batch_indices = batch_indices[..., None]
|
94 |
+
|
95 |
+
keep_prob = 1 - self.prob
|
96 |
+
num_patches_keep = max(1, int(num_tokens * keep_prob))
|
97 |
+
|
98 |
+
rand = torch.randn(batch, num_tokens)
|
99 |
+
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
|
100 |
+
|
101 |
+
x = x[batch_indices, patch_indices_keep]
|
102 |
+
|
103 |
+
if self.exclude_first_token:
|
104 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
105 |
+
|
106 |
+
return x
|
107 |
+
|
108 |
+
|
109 |
+
class Attention(nn.Module):
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
dim,
|
113 |
+
num_heads=8,
|
114 |
+
qkv_bias=True,
|
115 |
+
scaled_cosine=False,
|
116 |
+
scale_heads=False,
|
117 |
+
logit_scale_max=math.log(1. / 0.01),
|
118 |
+
attn_drop=0.,
|
119 |
+
proj_drop=0.
|
120 |
+
):
|
121 |
+
super().__init__()
|
122 |
+
self.scaled_cosine = scaled_cosine
|
123 |
+
self.scale_heads = scale_heads
|
124 |
+
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
125 |
+
self.num_heads = num_heads
|
126 |
+
self.head_dim = dim // num_heads
|
127 |
+
self.scale = self.head_dim ** -0.5
|
128 |
+
self.logit_scale_max = logit_scale_max
|
129 |
+
|
130 |
+
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
|
131 |
+
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
|
132 |
+
if qkv_bias:
|
133 |
+
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
|
134 |
+
else:
|
135 |
+
self.in_proj_bias = None
|
136 |
+
|
137 |
+
if self.scaled_cosine:
|
138 |
+
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
|
139 |
+
else:
|
140 |
+
self.logit_scale = None
|
141 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
142 |
+
if self.scale_heads:
|
143 |
+
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
|
144 |
+
else:
|
145 |
+
self.head_scale = None
|
146 |
+
self.out_proj = nn.Linear(dim, dim)
|
147 |
+
self.out_drop = nn.Dropout(proj_drop)
|
148 |
+
|
149 |
+
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
|
150 |
+
L, N, C = x.shape
|
151 |
+
q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1)
|
152 |
+
q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
153 |
+
k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
154 |
+
v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
155 |
+
|
156 |
+
if self.logit_scale is not None:
|
157 |
+
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
|
158 |
+
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
|
159 |
+
attn = attn.view(N, self.num_heads, L, L) * logit_scale
|
160 |
+
attn = attn.view(-1, L, L)
|
161 |
+
else:
|
162 |
+
q = q * self.scale
|
163 |
+
attn = torch.bmm(q, k.transpose(-1, -2))
|
164 |
+
|
165 |
+
if attn_mask is not None:
|
166 |
+
if attn_mask.dtype == torch.bool:
|
167 |
+
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
|
168 |
+
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
|
169 |
+
attn_mask = new_attn_mask
|
170 |
+
attn += attn_mask
|
171 |
+
|
172 |
+
attn = attn.softmax(dim=-1)
|
173 |
+
attn = self.attn_drop(attn)
|
174 |
+
|
175 |
+
x = torch.bmm(attn, v)
|
176 |
+
if self.head_scale is not None:
|
177 |
+
x = x.view(N, self.num_heads, L, C) * self.head_scale
|
178 |
+
x = x.view(-1, L, C)
|
179 |
+
x = x.transpose(0, 1).reshape(L, N, C)
|
180 |
+
x = self.out_proj(x)
|
181 |
+
x = self.out_drop(x)
|
182 |
+
return x
|
183 |
+
|
184 |
+
|
185 |
+
class AttentionalPooler(nn.Module):
|
186 |
+
def __init__(
|
187 |
+
self,
|
188 |
+
d_model: int,
|
189 |
+
context_dim: int,
|
190 |
+
n_head: int = 8,
|
191 |
+
n_queries: int = 256,
|
192 |
+
norm_layer: Callable = LayerNorm
|
193 |
+
):
|
194 |
+
super().__init__()
|
195 |
+
self.query = nn.Parameter(torch.randn(n_queries, d_model))
|
196 |
+
self.attn = nn.MultiheadAttention(d_model, n_head, kdim=context_dim, vdim=context_dim)
|
197 |
+
self.ln_q = norm_layer(d_model)
|
198 |
+
self.ln_k = norm_layer(context_dim)
|
199 |
+
|
200 |
+
def forward(self, x: torch.Tensor):
|
201 |
+
x = self.ln_k(x).permute(1, 0, 2) # NLD -> LND
|
202 |
+
N = x.shape[1]
|
203 |
+
q = self.ln_q(self.query)
|
204 |
+
out = self.attn(q.unsqueeze(1).expand(-1, N, -1), x, x, need_weights=False)[0]
|
205 |
+
return out.permute(1, 0, 2) # LND -> NLD
|
206 |
+
|
207 |
+
|
208 |
+
class ResidualAttentionBlock(nn.Module):
|
209 |
+
def __init__(
|
210 |
+
self,
|
211 |
+
d_model: int,
|
212 |
+
n_head: int,
|
213 |
+
mlp_ratio: float = 4.0,
|
214 |
+
ls_init_value: float = None,
|
215 |
+
act_layer: Callable = nn.GELU,
|
216 |
+
norm_layer: Callable = LayerNorm,
|
217 |
+
is_cross_attention: bool = False,
|
218 |
+
):
|
219 |
+
super().__init__()
|
220 |
+
|
221 |
+
self.ln_1 = norm_layer(d_model)
|
222 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
223 |
+
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
224 |
+
if is_cross_attention:
|
225 |
+
self.ln_1_kv = norm_layer(d_model)
|
226 |
+
|
227 |
+
self.ln_2 = norm_layer(d_model)
|
228 |
+
mlp_width = int(d_model * mlp_ratio)
|
229 |
+
self.mlp = nn.Sequential(OrderedDict([
|
230 |
+
("c_fc", nn.Linear(d_model, mlp_width)),
|
231 |
+
("gelu", act_layer()),
|
232 |
+
("c_proj", nn.Linear(mlp_width, d_model))
|
233 |
+
]))
|
234 |
+
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
235 |
+
|
236 |
+
def attention(
|
237 |
+
self,
|
238 |
+
q_x: torch.Tensor,
|
239 |
+
k_x: Optional[torch.Tensor] = None,
|
240 |
+
v_x: Optional[torch.Tensor] = None,
|
241 |
+
attn_mask: Optional[torch.Tensor] = None,
|
242 |
+
):
|
243 |
+
k_x = k_x if k_x is not None else q_x
|
244 |
+
v_x = v_x if v_x is not None else q_x
|
245 |
+
|
246 |
+
attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None
|
247 |
+
return self.attn(
|
248 |
+
q_x, k_x, v_x, need_weights=False, attn_mask=attn_mask
|
249 |
+
)[0]
|
250 |
+
|
251 |
+
def forward(
|
252 |
+
self,
|
253 |
+
q_x: torch.Tensor,
|
254 |
+
k_x: Optional[torch.Tensor] = None,
|
255 |
+
v_x: Optional[torch.Tensor] = None,
|
256 |
+
attn_mask: Optional[torch.Tensor] = None,
|
257 |
+
):
|
258 |
+
k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None
|
259 |
+
v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None
|
260 |
+
|
261 |
+
x = q_x + self.ls_1(self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask))
|
262 |
+
x = x + self.ls_2(self.mlp(self.ln_2(x)))
|
263 |
+
return x
|
264 |
+
|
265 |
+
|
266 |
+
class CustomResidualAttentionBlock(nn.Module):
|
267 |
+
def __init__(
|
268 |
+
self,
|
269 |
+
d_model: int,
|
270 |
+
n_head: int,
|
271 |
+
mlp_ratio: float = 4.0,
|
272 |
+
ls_init_value: float = None,
|
273 |
+
act_layer: Callable = nn.GELU,
|
274 |
+
norm_layer: Callable = LayerNorm,
|
275 |
+
scale_cosine_attn: bool = False,
|
276 |
+
scale_heads: bool = False,
|
277 |
+
scale_attn: bool = False,
|
278 |
+
scale_fc: bool = False,
|
279 |
+
):
|
280 |
+
super().__init__()
|
281 |
+
|
282 |
+
self.ln_1 = norm_layer(d_model)
|
283 |
+
self.attn = Attention(
|
284 |
+
d_model, n_head,
|
285 |
+
scaled_cosine=scale_cosine_attn,
|
286 |
+
scale_heads=scale_heads,
|
287 |
+
)
|
288 |
+
self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity()
|
289 |
+
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
290 |
+
|
291 |
+
self.ln_2 = norm_layer(d_model)
|
292 |
+
mlp_width = int(d_model * mlp_ratio)
|
293 |
+
self.mlp = nn.Sequential(OrderedDict([
|
294 |
+
("c_fc", nn.Linear(d_model, mlp_width)),
|
295 |
+
("gelu", act_layer()),
|
296 |
+
('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()),
|
297 |
+
("c_proj", nn.Linear(mlp_width, d_model))
|
298 |
+
]))
|
299 |
+
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
300 |
+
|
301 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
302 |
+
x = x + self.ls_1(self.ln_attn(self.attn(self.ln_1(x), attn_mask=attn_mask)))
|
303 |
+
x = x + self.ls_2(self.mlp(self.ln_2(x)))
|
304 |
+
return x
|
305 |
+
|
306 |
+
|
307 |
+
def _expand_token(token, batch_size: int):
|
308 |
+
return token.view(1, 1, -1).expand(batch_size, -1, -1)
|
309 |
+
|
310 |
+
|
311 |
+
class Transformer(nn.Module):
|
312 |
+
def __init__(
|
313 |
+
self,
|
314 |
+
width: int,
|
315 |
+
layers: int,
|
316 |
+
heads: int,
|
317 |
+
mlp_ratio: float = 4.0,
|
318 |
+
ls_init_value: float = None,
|
319 |
+
act_layer: Callable = nn.GELU,
|
320 |
+
norm_layer: Callable = LayerNorm,
|
321 |
+
):
|
322 |
+
super().__init__()
|
323 |
+
self.width = width
|
324 |
+
self.layers = layers
|
325 |
+
self.grad_checkpointing = False
|
326 |
+
|
327 |
+
self.resblocks = nn.ModuleList([
|
328 |
+
ResidualAttentionBlock(
|
329 |
+
width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer)
|
330 |
+
for _ in range(layers)
|
331 |
+
])
|
332 |
+
|
333 |
+
def get_cast_dtype(self) -> torch.dtype:
|
334 |
+
if hasattr(self.resblocks[0].mlp.c_fc, 'int8_original_dtype'):
|
335 |
+
return self.resblocks[0].mlp.c_fc.int8_original_dtype
|
336 |
+
return self.resblocks[0].mlp.c_fc.weight.dtype
|
337 |
+
|
338 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
339 |
+
for r in self.resblocks:
|
340 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
341 |
+
# TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372
|
342 |
+
x = checkpoint(r, x, None, None, attn_mask)
|
343 |
+
else:
|
344 |
+
x = r(x, attn_mask=attn_mask)
|
345 |
+
return x
|
346 |
+
|
347 |
+
|
348 |
+
class VisionTransformer(nn.Module):
|
349 |
+
output_tokens: torch.jit.Final[bool]
|
350 |
+
|
351 |
+
def __init__(
|
352 |
+
self,
|
353 |
+
in_channels:int,
|
354 |
+
image_size: int,
|
355 |
+
patch_size: int,
|
356 |
+
width: int,
|
357 |
+
layers: int,
|
358 |
+
heads: int,
|
359 |
+
mlp_ratio: float,
|
360 |
+
ls_init_value: float = None,
|
361 |
+
attentional_pool: bool = False,
|
362 |
+
attn_pooler_queries: int = 256,
|
363 |
+
attn_pooler_heads: int = 8,
|
364 |
+
output_dim: int = 512,
|
365 |
+
patch_dropout: float = 0.,
|
366 |
+
no_ln_pre: bool = False,
|
367 |
+
pos_embed_type: str = 'learnable',
|
368 |
+
pool_type: str = 'tok',
|
369 |
+
final_ln_after_pool: bool = False,
|
370 |
+
act_layer: Callable = nn.GELU,
|
371 |
+
norm_layer: Callable = LayerNorm,
|
372 |
+
output_tokens: bool = False,
|
373 |
+
):
|
374 |
+
super().__init__()
|
375 |
+
assert pool_type in ('tok', 'avg', 'none')
|
376 |
+
self.output_tokens = output_tokens
|
377 |
+
image_height, image_width = self.image_size = to_2tuple(image_size)
|
378 |
+
patch_height, patch_width = self.patch_size = to_2tuple(patch_size)
|
379 |
+
self.grid_size = (image_height // patch_height, image_width // patch_width)
|
380 |
+
self.final_ln_after_pool = final_ln_after_pool # currently ignored w/ attn pool enabled
|
381 |
+
self.output_dim = output_dim
|
382 |
+
|
383 |
+
self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
384 |
+
|
385 |
+
# class embeddings and positional embeddings
|
386 |
+
scale = width ** -0.5
|
387 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
388 |
+
if pos_embed_type == 'learnable':
|
389 |
+
self.positional_embedding = nn.Parameter(
|
390 |
+
scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))
|
391 |
+
elif pos_embed_type == 'sin_cos_2d':
|
392 |
+
# fixed sin-cos embedding
|
393 |
+
assert self.grid_size[0] == self.grid_size[1], \
|
394 |
+
'currently sin cos 2d pos embedding only supports square input'
|
395 |
+
self.positional_embedding = nn.Parameter(
|
396 |
+
torch.zeros(self.grid_size[0] * self.grid_size[1] + 1, width), requires_grad=False)
|
397 |
+
pos_embed_type = get_2d_sincos_pos_embed(width, self.grid_size[0], cls_token=True)
|
398 |
+
self.positional_embedding.data.copy_(torch.from_numpy(pos_embed_type).float())
|
399 |
+
else:
|
400 |
+
raise ValueError
|
401 |
+
|
402 |
+
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
|
403 |
+
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
|
404 |
+
|
405 |
+
self.ln_pre = nn.Identity() if no_ln_pre else norm_layer(width)
|
406 |
+
self.transformer = Transformer(
|
407 |
+
width,
|
408 |
+
layers,
|
409 |
+
heads,
|
410 |
+
mlp_ratio,
|
411 |
+
ls_init_value=ls_init_value,
|
412 |
+
act_layer=act_layer,
|
413 |
+
norm_layer=norm_layer,
|
414 |
+
)
|
415 |
+
|
416 |
+
if attentional_pool:
|
417 |
+
if isinstance(attentional_pool, str):
|
418 |
+
self.attn_pool_type = attentional_pool
|
419 |
+
self.pool_type = 'none'
|
420 |
+
if attentional_pool in ('parallel', 'cascade'):
|
421 |
+
self.attn_pool = AttentionalPooler(
|
422 |
+
output_dim,
|
423 |
+
width,
|
424 |
+
n_head=attn_pooler_heads,
|
425 |
+
n_queries=attn_pooler_queries,
|
426 |
+
)
|
427 |
+
self.attn_pool_contrastive = AttentionalPooler(
|
428 |
+
output_dim,
|
429 |
+
width,
|
430 |
+
n_head=attn_pooler_heads,
|
431 |
+
n_queries=1,
|
432 |
+
)
|
433 |
+
else:
|
434 |
+
assert False
|
435 |
+
else:
|
436 |
+
self.attn_pool_type = ''
|
437 |
+
self.pool_type = pool_type
|
438 |
+
self.attn_pool = AttentionalPooler(
|
439 |
+
output_dim,
|
440 |
+
width,
|
441 |
+
n_head=attn_pooler_heads,
|
442 |
+
n_queries=attn_pooler_queries,
|
443 |
+
)
|
444 |
+
self.attn_pool_contrastive = None
|
445 |
+
pool_dim = output_dim
|
446 |
+
else:
|
447 |
+
self.attn_pool = None
|
448 |
+
pool_dim = width
|
449 |
+
self.pool_type = pool_type
|
450 |
+
|
451 |
+
self.ln_post = norm_layer(pool_dim)
|
452 |
+
self.proj = nn.Parameter(scale * torch.randn(pool_dim, output_dim))
|
453 |
+
|
454 |
+
self.init_parameters()
|
455 |
+
|
456 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
457 |
+
for param in self.parameters():
|
458 |
+
param.requires_grad = False
|
459 |
+
|
460 |
+
if unlocked_groups != 0:
|
461 |
+
groups = [
|
462 |
+
[
|
463 |
+
self.conv1,
|
464 |
+
self.class_embedding,
|
465 |
+
self.positional_embedding,
|
466 |
+
self.ln_pre,
|
467 |
+
],
|
468 |
+
*self.transformer.resblocks[:-1],
|
469 |
+
[
|
470 |
+
self.transformer.resblocks[-1],
|
471 |
+
self.ln_post,
|
472 |
+
],
|
473 |
+
self.proj,
|
474 |
+
]
|
475 |
+
|
476 |
+
def _unlock(x):
|
477 |
+
if isinstance(x, Sequence):
|
478 |
+
for g in x:
|
479 |
+
_unlock(g)
|
480 |
+
else:
|
481 |
+
if isinstance(x, torch.nn.Parameter):
|
482 |
+
x.requires_grad = True
|
483 |
+
else:
|
484 |
+
for p in x.parameters():
|
485 |
+
p.requires_grad = True
|
486 |
+
|
487 |
+
_unlock(groups[-unlocked_groups:])
|
488 |
+
|
489 |
+
def init_parameters(self):
|
490 |
+
# FIXME OpenAI CLIP did not define an init for the VisualTransformer
|
491 |
+
# TODO experiment if default PyTorch init, below, or alternate init is best.
|
492 |
+
|
493 |
+
# nn.init.normal_(self.class_embedding, std=self.scale)
|
494 |
+
# nn.init.normal_(self.positional_embedding, std=self.scale)
|
495 |
+
#
|
496 |
+
# proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
497 |
+
# attn_std = self.transformer.width ** -0.5
|
498 |
+
# fc_std = (2 * self.transformer.width) ** -0.5
|
499 |
+
# for block in self.transformer.resblocks:
|
500 |
+
# nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
501 |
+
# nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
502 |
+
# nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
503 |
+
# nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
504 |
+
#
|
505 |
+
# if self.text_projection is not None:
|
506 |
+
# nn.init.normal_(self.text_projection, std=self.scale)
|
507 |
+
pass
|
508 |
+
|
509 |
+
@torch.jit.ignore
|
510 |
+
def set_grad_checkpointing(self, enable=True):
|
511 |
+
self.transformer.grad_checkpointing = enable
|
512 |
+
|
513 |
+
def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
514 |
+
if self.pool_type == 'avg':
|
515 |
+
pooled, tokens = x[:, 1:].mean(dim=1), x[:, 1:]
|
516 |
+
elif self.pool_type == 'tok':
|
517 |
+
pooled, tokens = x[:, 0], x[:, 1:]
|
518 |
+
else:
|
519 |
+
pooled = tokens = x
|
520 |
+
|
521 |
+
return pooled, tokens
|
522 |
+
|
523 |
+
def forward(self, x: torch.Tensor):
|
524 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
525 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
526 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
527 |
+
|
528 |
+
# class embeddings and positional embeddings
|
529 |
+
x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1)
|
530 |
+
# shape = [*, grid ** 2 + 1, width]
|
531 |
+
x = x + self.positional_embedding.to(x.dtype)
|
532 |
+
|
533 |
+
x = self.patch_dropout(x)
|
534 |
+
x = self.ln_pre(x)
|
535 |
+
|
536 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
537 |
+
x = self.transformer(x)
|
538 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
539 |
+
|
540 |
+
if self.attn_pool is not None:
|
541 |
+
if self.attn_pool_contrastive is not None:
|
542 |
+
# This is untested, WIP pooling that should match paper
|
543 |
+
x = self.ln_post(x) # TBD LN first or separate one after each pool?
|
544 |
+
tokens = self.attn_pool(x)
|
545 |
+
if self.attn_pool_type == 'parallel':
|
546 |
+
pooled = self.attn_pool_contrastive(x)
|
547 |
+
else:
|
548 |
+
assert self.attn_pool_type == 'cascade'
|
549 |
+
pooled = self.attn_pool_contrastive(tokens)
|
550 |
+
else:
|
551 |
+
# this is the original OpenCLIP CoCa setup, does not match paper
|
552 |
+
x = self.attn_pool(x)
|
553 |
+
x = self.ln_post(x)
|
554 |
+
pooled, tokens = self._global_pool(x)
|
555 |
+
elif self.final_ln_after_pool:
|
556 |
+
pooled, tokens = self._global_pool(x)
|
557 |
+
pooled = self.ln_post(pooled)
|
558 |
+
else:
|
559 |
+
x = self.ln_post(x)
|
560 |
+
pooled, tokens = self._global_pool(x)
|
561 |
+
|
562 |
+
if self.proj is not None:
|
563 |
+
pooled = pooled @ self.proj
|
564 |
+
|
565 |
+
if self.output_tokens:
|
566 |
+
return pooled, tokens
|
567 |
+
|
568 |
+
return pooled
|
569 |
+
|
570 |
+
|
571 |
+
def text_global_pool(x, text: Optional[torch.Tensor] = None, pool_type: str = 'argmax'):
|
572 |
+
if pool_type == 'first':
|
573 |
+
pooled, tokens = x[:, 0], x[:, 1:]
|
574 |
+
elif pool_type == 'last':
|
575 |
+
pooled, tokens = x[:, -1], x[:, :-1]
|
576 |
+
elif pool_type == 'argmax':
|
577 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
578 |
+
assert text is not None
|
579 |
+
pooled, tokens = x[torch.arange(x.shape[0]), text.argmax(dim=-1)], x
|
580 |
+
else:
|
581 |
+
pooled = tokens = x
|
582 |
+
|
583 |
+
return pooled, tokens
|
584 |
+
|
585 |
+
|
586 |
+
class TextTransformer(nn.Module):
|
587 |
+
output_tokens: torch.jit.Final[bool]
|
588 |
+
|
589 |
+
def __init__(
|
590 |
+
self,
|
591 |
+
context_length: int = 77,
|
592 |
+
vocab_size: int = 49408,
|
593 |
+
width: int = 512,
|
594 |
+
heads: int = 8,
|
595 |
+
layers: int = 12,
|
596 |
+
mlp_ratio: float = 4.0,
|
597 |
+
ls_init_value: float = None,
|
598 |
+
output_dim: int = 512,
|
599 |
+
embed_cls: bool = False,
|
600 |
+
no_causal_mask: bool = False,
|
601 |
+
pad_id: int = 0,
|
602 |
+
pool_type: str = 'argmax',
|
603 |
+
proj_bias: bool = False,
|
604 |
+
act_layer: Callable = nn.GELU,
|
605 |
+
norm_layer: Callable = LayerNorm,
|
606 |
+
output_tokens: bool = False,
|
607 |
+
):
|
608 |
+
super().__init__()
|
609 |
+
assert pool_type in ('first', 'last', 'argmax', 'none')
|
610 |
+
self.output_tokens = output_tokens
|
611 |
+
self.num_pos = self.context_length = context_length
|
612 |
+
self.vocab_size = vocab_size
|
613 |
+
self.width = width
|
614 |
+
self.output_dim = output_dim
|
615 |
+
self.heads = heads
|
616 |
+
self.pad_id = pad_id
|
617 |
+
self.pool_type = pool_type
|
618 |
+
|
619 |
+
self.token_embedding = nn.Embedding(vocab_size, width)
|
620 |
+
if embed_cls:
|
621 |
+
self.cls_emb = nn.Parameter(torch.empty(width))
|
622 |
+
self.num_pos += 1
|
623 |
+
else:
|
624 |
+
self.cls_emb = None
|
625 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.num_pos, width))
|
626 |
+
self.transformer = Transformer(
|
627 |
+
width=width,
|
628 |
+
layers=layers,
|
629 |
+
heads=heads,
|
630 |
+
mlp_ratio=mlp_ratio,
|
631 |
+
ls_init_value=ls_init_value,
|
632 |
+
act_layer=act_layer,
|
633 |
+
norm_layer=norm_layer,
|
634 |
+
)
|
635 |
+
self.ln_final = norm_layer(width)
|
636 |
+
|
637 |
+
if no_causal_mask:
|
638 |
+
self.attn_mask = None
|
639 |
+
else:
|
640 |
+
self.register_buffer('attn_mask', self.build_causal_mask(), persistent=False)
|
641 |
+
|
642 |
+
if proj_bias:
|
643 |
+
self.text_projection = nn.Linear(width, output_dim)
|
644 |
+
else:
|
645 |
+
self.text_projection = nn.Parameter(torch.empty(width, output_dim))
|
646 |
+
|
647 |
+
self.init_parameters()
|
648 |
+
|
649 |
+
def init_parameters(self):
|
650 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
651 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
652 |
+
if self.cls_emb is not None:
|
653 |
+
nn.init.normal_(self.cls_emb, std=0.01)
|
654 |
+
|
655 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
656 |
+
attn_std = self.transformer.width ** -0.5
|
657 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
658 |
+
for block in self.transformer.resblocks:
|
659 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
660 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
661 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
662 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
663 |
+
|
664 |
+
if self.text_projection is not None:
|
665 |
+
if isinstance(self.text_projection, nn.Linear):
|
666 |
+
nn.init.normal_(self.text_projection.weight, std=self.transformer.width ** -0.5)
|
667 |
+
if self.text_projection.bias is not None:
|
668 |
+
nn.init.zeros_(self.text_projection.bias)
|
669 |
+
else:
|
670 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
671 |
+
|
672 |
+
@torch.jit.ignore
|
673 |
+
def set_grad_checkpointing(self, enable=True):
|
674 |
+
self.transformer.grad_checkpointing = enable
|
675 |
+
|
676 |
+
def build_causal_mask(self):
|
677 |
+
# lazily create causal attention mask, with full attention between the tokens
|
678 |
+
# pytorch uses additive attention mask; fill with -inf
|
679 |
+
mask = torch.empty(self.num_pos, self.num_pos)
|
680 |
+
mask.fill_(float("-inf"))
|
681 |
+
mask.triu_(1) # zero out the lower diagonal
|
682 |
+
return mask
|
683 |
+
|
684 |
+
def build_cls_mask(self, text, cast_dtype: torch.dtype):
|
685 |
+
cls_mask = (text != self.pad_id).unsqueeze(1)
|
686 |
+
cls_mask = F.pad(cls_mask, (1, 0, cls_mask.shape[2], 0), value=True)
|
687 |
+
additive_mask = torch.empty(cls_mask.shape, dtype=cast_dtype, device=cls_mask.device)
|
688 |
+
additive_mask.fill_(0)
|
689 |
+
additive_mask.masked_fill_(~cls_mask, float("-inf"))
|
690 |
+
additive_mask = torch.repeat_interleave(additive_mask, self.heads, 0)
|
691 |
+
return additive_mask
|
692 |
+
|
693 |
+
def forward(self, text):
|
694 |
+
cast_dtype = self.transformer.get_cast_dtype()
|
695 |
+
seq_len = text.shape[1]
|
696 |
+
|
697 |
+
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
|
698 |
+
attn_mask = self.attn_mask
|
699 |
+
if self.cls_emb is not None:
|
700 |
+
seq_len += 1
|
701 |
+
x = torch.cat([x, _expand_token(self.cls_emb, x.shape[0])], dim=1)
|
702 |
+
cls_mask = self.build_cls_mask(text, cast_dtype)
|
703 |
+
if attn_mask is not None:
|
704 |
+
attn_mask = attn_mask[None, :seq_len, :seq_len] + cls_mask[:, :seq_len, :seq_len]
|
705 |
+
|
706 |
+
x = x + self.positional_embedding[:seq_len].to(cast_dtype)
|
707 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
708 |
+
x = self.transformer(x, attn_mask=attn_mask)
|
709 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
710 |
+
|
711 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
712 |
+
if self.cls_emb is not None:
|
713 |
+
# presence of appended cls embed (CoCa) overrides pool_type, always take last token
|
714 |
+
pooled, tokens = text_global_pool(x, pool_type='last')
|
715 |
+
pooled = self.ln_final(pooled) # final LN applied after pooling in this case
|
716 |
+
else:
|
717 |
+
x = self.ln_final(x)
|
718 |
+
pooled, tokens = text_global_pool(x, text, pool_type=self.pool_type)
|
719 |
+
|
720 |
+
if self.text_projection is not None:
|
721 |
+
if isinstance(self.text_projection, nn.Linear):
|
722 |
+
pooled = self.text_projection(pooled)
|
723 |
+
else:
|
724 |
+
pooled = pooled @ self.text_projection
|
725 |
+
|
726 |
+
if self.output_tokens:
|
727 |
+
return pooled, tokens
|
728 |
+
|
729 |
+
return pooled
|
730 |
+
|
731 |
+
|
732 |
+
class MultimodalTransformer(Transformer):
|
733 |
+
def __init__(
|
734 |
+
self,
|
735 |
+
width: int,
|
736 |
+
layers: int,
|
737 |
+
heads: int,
|
738 |
+
context_length: int = 77,
|
739 |
+
mlp_ratio: float = 4.0,
|
740 |
+
ls_init_value: float = None,
|
741 |
+
act_layer: Callable = nn.GELU,
|
742 |
+
norm_layer: Callable = LayerNorm,
|
743 |
+
output_dim: int = 512,
|
744 |
+
):
|
745 |
+
|
746 |
+
super().__init__(
|
747 |
+
width=width,
|
748 |
+
layers=layers,
|
749 |
+
heads=heads,
|
750 |
+
mlp_ratio=mlp_ratio,
|
751 |
+
ls_init_value=ls_init_value,
|
752 |
+
act_layer=act_layer,
|
753 |
+
norm_layer=norm_layer,
|
754 |
+
)
|
755 |
+
self.context_length = context_length
|
756 |
+
self.cross_attn = nn.ModuleList([
|
757 |
+
ResidualAttentionBlock(
|
758 |
+
width,
|
759 |
+
heads,
|
760 |
+
mlp_ratio,
|
761 |
+
ls_init_value=ls_init_value,
|
762 |
+
act_layer=act_layer,
|
763 |
+
norm_layer=norm_layer,
|
764 |
+
is_cross_attention=True,
|
765 |
+
)
|
766 |
+
for _ in range(layers)
|
767 |
+
])
|
768 |
+
|
769 |
+
self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False)
|
770 |
+
|
771 |
+
self.ln_final = norm_layer(width)
|
772 |
+
self.text_projection = nn.Parameter(torch.empty(width, output_dim))
|
773 |
+
|
774 |
+
def init_parameters(self):
|
775 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
776 |
+
attn_std = self.transformer.width ** -0.5
|
777 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
778 |
+
for block in self.transformer.resblocks:
|
779 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
780 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
781 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
782 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
783 |
+
for block in self.transformer.cross_attn:
|
784 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
785 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
786 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
787 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
788 |
+
|
789 |
+
if self.text_projection is not None:
|
790 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
791 |
+
|
792 |
+
def build_attention_mask(self):
|
793 |
+
# lazily create causal attention mask, with full attention between the tokens
|
794 |
+
# pytorch uses additive attention mask; fill with -inf
|
795 |
+
mask = torch.empty(self.context_length, self.context_length)
|
796 |
+
mask.fill_(float("-inf"))
|
797 |
+
mask.triu_(1) # zero out the lower diagonal
|
798 |
+
return mask
|
799 |
+
|
800 |
+
def forward(self, image_embs, text_embs):
|
801 |
+
text_embs = text_embs.permute(1, 0, 2) # NLD -> LNDsq
|
802 |
+
image_embs = image_embs.permute(1, 0, 2) # NLD -> LND
|
803 |
+
seq_len = text_embs.shape[0]
|
804 |
+
|
805 |
+
for resblock, cross_attn in zip(self.resblocks, self.cross_attn):
|
806 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
807 |
+
# TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372
|
808 |
+
text_embs = checkpoint(resblock, text_embs, None, None, self.attn_mask[:seq_len, :seq_len])
|
809 |
+
text_embs = checkpoint(cross_attn, text_embs, image_embs, image_embs, None)
|
810 |
+
else:
|
811 |
+
text_embs = resblock(text_embs, attn_mask=self.attn_mask[:seq_len, :seq_len])
|
812 |
+
text_embs = cross_attn(text_embs, k_x=image_embs, v_x=image_embs)
|
813 |
+
|
814 |
+
x = text_embs.permute(1, 0, 2) # LND -> NLD
|
815 |
+
x = self.ln_final(x)
|
816 |
+
|
817 |
+
if self.text_projection is not None:
|
818 |
+
x = x @ self.text_projection
|
819 |
+
|
820 |
+
return x
|
821 |
+
|
822 |
+
@torch.jit.ignore
|
823 |
+
def set_grad_checkpointing(self, enable=True):
|
824 |
+
self.grad_checkpointing = enable
|
825 |
+
|
826 |
+
|
827 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
828 |
+
# All rights reserved.
|
829 |
+
|
830 |
+
# This source code is licensed under the license found in the
|
831 |
+
# LICENSE file in the root directory of this source tree.
|
832 |
+
# --------------------------------------------------------
|
833 |
+
# Position embedding utils
|
834 |
+
# --------------------------------------------------------
|
835 |
+
|
836 |
+
import numpy as np
|
837 |
+
|
838 |
+
import torch
|
839 |
+
|
840 |
+
# --------------------------------------------------------
|
841 |
+
# 2D sine-cosine position embedding
|
842 |
+
# References:
|
843 |
+
# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
|
844 |
+
# MoCo v3: https://github.com/facebookresearch/moco-v3
|
845 |
+
# --------------------------------------------------------
|
846 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
847 |
+
"""
|
848 |
+
grid_size: int of the grid height and width
|
849 |
+
return:
|
850 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
851 |
+
"""
|
852 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
853 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
854 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
855 |
+
grid = np.stack(grid, axis=0)
|
856 |
+
|
857 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
858 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
859 |
+
if cls_token:
|
860 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
861 |
+
return pos_embed
|
862 |
+
|
863 |
+
|
864 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
865 |
+
assert embed_dim % 2 == 0
|
866 |
+
|
867 |
+
# use half of dimensions to encode grid_h
|
868 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
869 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
870 |
+
|
871 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
872 |
+
return emb
|
873 |
+
|
874 |
+
|
875 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
876 |
+
"""
|
877 |
+
embed_dim: output dimension for each position
|
878 |
+
pos: a list of positions to be encoded: size (M,)
|
879 |
+
out: (M, D)
|
880 |
+
"""
|
881 |
+
assert embed_dim % 2 == 0
|
882 |
+
omega = np.arange(embed_dim // 2, dtype=float)
|
883 |
+
omega /= embed_dim / 2.
|
884 |
+
omega = 1. / 10000**omega # (D/2,)
|
885 |
+
|
886 |
+
pos = pos.reshape(-1) # (M,)
|
887 |
+
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
888 |
+
|
889 |
+
emb_sin = np.sin(out) # (M, D/2)
|
890 |
+
emb_cos = np.cos(out) # (M, D/2)
|
891 |
+
|
892 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
893 |
+
return emb
|
894 |
+
|
895 |
+
|
896 |
+
# --------------------------------------------------------
|
897 |
+
# Interpolate position embeddings for high-resolution
|
898 |
+
# References:
|
899 |
+
# DeiT: https://github.com/facebookresearch/deit
|
900 |
+
# --------------------------------------------------------
|
901 |
+
def interpolate_pos_embed(model, checkpoint_model):
|
902 |
+
if 'pos_embed' in checkpoint_model:
|
903 |
+
pos_embed_checkpoint = checkpoint_model['pos_embed']
|
904 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
905 |
+
num_patches = model.patch_embed.num_patches
|
906 |
+
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
|
907 |
+
# height (== width) for the checkpoint position embedding
|
908 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
909 |
+
# height (== width) for the new position embedding
|
910 |
+
new_size = int(num_patches ** 0.5)
|
911 |
+
# class_token and dist_token are kept unchanged
|
912 |
+
if orig_size != new_size:
|
913 |
+
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
914 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
915 |
+
# only the position tokens are interpolated
|
916 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
917 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
918 |
+
pos_tokens = torch.nn.functional.interpolate(
|
919 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
920 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
921 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
922 |
+
checkpoint_model['pos_embed'] = new_pos_embed
|
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</s>": 2,
|
3 |
+
"<s>": 1,
|
4 |
+
"<unk>": 0
|
5 |
+
}
|
config.json
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "G:\\Temp\\finetune_result\\LLAMA2-7B-CHAT_ViT-L-16-512_MOREKEYWORD_LN_PATCH_FINETUNE_ChexpertJSON_POSTTRAIN_25000_DIST",
|
3 |
+
"architectures": [
|
4 |
+
"CXRLLAVAModel"
|
5 |
+
],
|
6 |
+
"attn_implementation": null,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "CXR_LLAVA_HF.CXRLLAVAConfig",
|
9 |
+
"AutoModel": "CXR_LLAVA_HF.CXRLLAVAModel"
|
10 |
+
},
|
11 |
+
"clip_embed_dim": 128,
|
12 |
+
"clip_quick_gelu": false,
|
13 |
+
"clip_vision_cfg": {
|
14 |
+
"image_size": 512,
|
15 |
+
"layers": 24,
|
16 |
+
"patch_size": 16,
|
17 |
+
"width": 1024
|
18 |
+
},
|
19 |
+
"clip_vision_tower_dtype": "bf16",
|
20 |
+
"clip_vision_tower_path": null,
|
21 |
+
"freeze_mm_mlp_adapter": false,
|
22 |
+
"image_aspect_ratio": "square",
|
23 |
+
"image_grid_pinpoints": null,
|
24 |
+
"image_preprocess_cfg": {
|
25 |
+
"mean": 0.5518136078431373,
|
26 |
+
"std": 0.3821719215686275
|
27 |
+
},
|
28 |
+
"llama": {
|
29 |
+
"_name_or_path": "/home/jovyan/llava/SW_LLAVA/LLAMA2-7B-CHAT_ViT-L-16-512_MOREKEYWORD_LN_PATCH_FINETUNE_ChexpertJSON_POSTTRAIN",
|
30 |
+
"add_cross_attention": false,
|
31 |
+
"architectures": [
|
32 |
+
"LlamaForCausalLM"
|
33 |
+
],
|
34 |
+
"bad_words_ids": null,
|
35 |
+
"begin_suppress_tokens": null,
|
36 |
+
"bos_token_id": 1,
|
37 |
+
"chunk_size_feed_forward": 0,
|
38 |
+
"cross_attention_hidden_size": null,
|
39 |
+
"decoder_start_token_id": null,
|
40 |
+
"diversity_penalty": 0.0,
|
41 |
+
"do_sample": false,
|
42 |
+
"early_stopping": false,
|
43 |
+
"encoder_no_repeat_ngram_size": 0,
|
44 |
+
"eos_token_id": 2,
|
45 |
+
"exponential_decay_length_penalty": null,
|
46 |
+
"finetuning_task": null,
|
47 |
+
"forced_bos_token_id": null,
|
48 |
+
"forced_eos_token_id": null,
|
49 |
+
"hidden_act": "silu",
|
50 |
+
"hidden_size": 4096,
|
51 |
+
"id2label": {
|
52 |
+
"0": "LABEL_0",
|
53 |
+
"1": "LABEL_1"
|
54 |
+
},
|
55 |
+
"initializer_range": 0.02,
|
56 |
+
"intermediate_size": 11008,
|
57 |
+
"is_decoder": false,
|
58 |
+
"is_encoder_decoder": false,
|
59 |
+
"label2id": {
|
60 |
+
"LABEL_0": 0,
|
61 |
+
"LABEL_1": 1
|
62 |
+
},
|
63 |
+
"length_penalty": 1.0,
|
64 |
+
"max_length": 20,
|
65 |
+
"max_position_embeddings": 4096,
|
66 |
+
"min_length": 0,
|
67 |
+
"model_type": "llama",
|
68 |
+
"no_repeat_ngram_size": 0,
|
69 |
+
"num_attention_heads": 32,
|
70 |
+
"num_beam_groups": 1,
|
71 |
+
"num_beams": 1,
|
72 |
+
"num_hidden_layers": 32,
|
73 |
+
"num_key_value_heads": 32,
|
74 |
+
"num_return_sequences": 1,
|
75 |
+
"output_attentions": false,
|
76 |
+
"output_hidden_states": false,
|
77 |
+
"output_scores": false,
|
78 |
+
"pad_token_id": null,
|
79 |
+
"prefix": null,
|
80 |
+
"pretraining_tp": 1,
|
81 |
+
"problem_type": null,
|
82 |
+
"pruned_heads": {},
|
83 |
+
"remove_invalid_values": false,
|
84 |
+
"repetition_penalty": 1.0,
|
85 |
+
"return_dict": true,
|
86 |
+
"return_dict_in_generate": false,
|
87 |
+
"rms_norm_eps": 1e-06,
|
88 |
+
"rope_scaling": null,
|
89 |
+
"rope_theta": 10000.0,
|
90 |
+
"sep_token_id": null,
|
91 |
+
"suppress_tokens": null,
|
92 |
+
"task_specific_params": null,
|
93 |
+
"temperature": 1.0,
|
94 |
+
"tf_legacy_loss": false,
|
95 |
+
"tie_encoder_decoder": false,
|
96 |
+
"tie_word_embeddings": false,
|
97 |
+
"tokenizer_class": null,
|
98 |
+
"top_k": 50,
|
99 |
+
"top_p": 1.0,
|
100 |
+
"torch_dtype": "float16",
|
101 |
+
"torchscript": false,
|
102 |
+
"typical_p": 1.0,
|
103 |
+
"use_bfloat16": false,
|
104 |
+
"use_cache": true,
|
105 |
+
"vocab_size": 32000
|
106 |
+
},
|
107 |
+
"llama_model_dtype": "bf16",
|
108 |
+
"llama_model_path": "/home/jovyan/llava/SW_LLAVA/LLAMA2-7B-CHAT_ViT-L-16-512_MOREKEYWORD_LN_PATCH_FINETUNE_ChexpertJSON_POSTTRAIN",
|
109 |
+
"mm_projector_dim": 1024,
|
110 |
+
"mm_projector_dtype": "fp32",
|
111 |
+
"mm_projector_path": null,
|
112 |
+
"mm_use_im_patch_token": false,
|
113 |
+
"mm_use_im_start_end": false,
|
114 |
+
"model_type": "CXR-LLAVA",
|
115 |
+
"torch_dtype": "bfloat16",
|
116 |
+
"transformers_version": "4.36.2",
|
117 |
+
"tune_mm_mlp_adapter": false,
|
118 |
+
"use_cache": false
|
119 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.36.2"
|
4 |
+
}
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a30a3337ea0e778627c417863e19621d3df385d2b843ac98c97fd23737f5053
|
3 |
+
size 4917365472
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f34846c3dcbf1115a4ed3992fbd3325729a3991bae7ff6418fd6161c561a604
|
3 |
+
size 4947390880
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42a5c74885378cc22d42cd4d2159e648fd5a13821c22a7c7daef33cdf31c53e7
|
3 |
+
size 4228057888
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14092742656
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"llama.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
7 |
+
"llama.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"llama.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"llama.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"llama.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"llama.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"llama.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"llama.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"llama.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"llama.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"llama.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"llama.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"llama.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"llama.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"llama.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"llama.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"llama.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"llama.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"llama.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"llama.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
26 |
+
"llama.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"llama.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"llama.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
29 |
+
"llama.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
30 |
+
"llama.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
31 |
+
"llama.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
32 |
+
"llama.layers.10.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
33 |
+
"llama.layers.10.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
34 |
+
"llama.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
35 |
+
"llama.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"llama.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"llama.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"llama.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"llama.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"llama.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"llama.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"llama.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"llama.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"llama.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"llama.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"llama.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"llama.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"llama.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"llama.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"llama.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"llama.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"llama.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"llama.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"llama.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"llama.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"llama.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"llama.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"llama.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"llama.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"llama.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"llama.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"llama.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"llama.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"llama.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"llama.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"llama.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"llama.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"llama.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"llama.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"llama.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"llama.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"llama.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"llama.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"llama.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"llama.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"llama.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"llama.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"llama.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"llama.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"llama.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"llama.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"llama.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"llama.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"llama.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"llama.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"llama.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"llama.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"llama.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"llama.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"llama.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"llama.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"llama.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"llama.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"llama.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"llama.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"llama.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"llama.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"llama.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"llama.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"llama.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"llama.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"llama.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"llama.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"llama.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"llama.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"llama.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"llama.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"llama.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"llama.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"llama.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"llama.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"llama.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"llama.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"llama.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"llama.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
116 |
+
"llama.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"llama.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"llama.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"llama.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"llama.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"llama.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"llama.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"llama.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"llama.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
125 |
+
"llama.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"llama.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"llama.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"llama.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"llama.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"llama.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"llama.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"llama.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"llama.layers.21.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
134 |
+
"llama.layers.21.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
135 |
+
"llama.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"llama.layers.21.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
137 |
+
"llama.layers.21.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
138 |
+
"llama.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"llama.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"llama.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"llama.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"llama.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
143 |
+
"llama.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
144 |
+
"llama.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
145 |
+
"llama.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
146 |
+
"llama.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
147 |
+
"llama.layers.22.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
148 |
+
"llama.layers.22.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
149 |
+
"llama.layers.22.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
150 |
+
"llama.layers.22.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
151 |
+
"llama.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
152 |
+
"llama.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"llama.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"llama.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"llama.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"llama.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"llama.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
158 |
+
"llama.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"llama.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"llama.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"llama.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"llama.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"llama.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"llama.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"llama.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"llama.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"llama.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"llama.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"llama.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"llama.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"llama.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"llama.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"llama.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"llama.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"llama.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"llama.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"llama.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"llama.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"llama.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"llama.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"llama.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"llama.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"llama.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"llama.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"llama.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"llama.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"llama.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"llama.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"llama.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"llama.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"llama.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"llama.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"llama.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"llama.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"llama.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"llama.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"llama.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"llama.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"llama.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"llama.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"llama.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"llama.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"llama.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"llama.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"llama.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"llama.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"llama.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"llama.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"llama.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"llama.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"llama.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"llama.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"llama.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"llama.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
215 |
+
"llama.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"llama.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"llama.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"llama.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"llama.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"llama.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"llama.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"llama.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"llama.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
224 |
+
"llama.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"llama.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"llama.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"llama.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"llama.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"llama.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"llama.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"llama.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"llama.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"llama.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"llama.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"llama.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"llama.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"llama.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"llama.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"llama.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"llama.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"llama.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
242 |
+
"llama.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"llama.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"llama.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"llama.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"llama.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"llama.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"llama.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"llama.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"llama.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"llama.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"llama.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"llama.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"llama.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"llama.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"llama.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"llama.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"llama.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"llama.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"llama.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"llama.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"llama.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"llama.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"llama.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"llama.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"llama.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"llama.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"llama.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"llama.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"llama.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"llama.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"llama.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"llama.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"llama.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"llama.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"llama.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"llama.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"llama.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"llama.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"llama.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"llama.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"llama.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"llama.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"llama.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"llama.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"llama.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
287 |
+
"llama.layers.9.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
288 |
+
"llama.layers.9.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
289 |
+
"llama.layers.9.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
290 |
+
"llama.layers.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
291 |
+
"llama.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"llama.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"llama.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"llama.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"llama.norm.weight": "model-00003-of-00003.safetensors",
|
296 |
+
"lm_head.weight": "model-00001-of-00003.safetensors",
|
297 |
+
"mm_projector.bias": "model-00001-of-00003.safetensors",
|
298 |
+
"mm_projector.weight": "model-00001-of-00003.safetensors",
|
299 |
+
"vision_tower.class_embedding": "model-00001-of-00003.safetensors",
|
300 |
+
"vision_tower.conv1.weight": "model-00001-of-00003.safetensors",
|
301 |
+
"vision_tower.ln_post.bias": "model-00001-of-00003.safetensors",
|
302 |
+
"vision_tower.ln_post.weight": "model-00001-of-00003.safetensors",
|
303 |
+
"vision_tower.ln_pre.bias": "model-00001-of-00003.safetensors",
|
304 |
+
"vision_tower.ln_pre.weight": "model-00001-of-00003.safetensors",
|
305 |
+
"vision_tower.positional_embedding": "model-00001-of-00003.safetensors",
|
306 |
+
"vision_tower.proj": "model-00001-of-00003.safetensors",
|
307 |
+
"vision_tower.transformer.resblocks.0.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
308 |
+
"vision_tower.transformer.resblocks.0.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
309 |
+
"vision_tower.transformer.resblocks.0.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
310 |
+
"vision_tower.transformer.resblocks.0.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
311 |
+
"vision_tower.transformer.resblocks.0.ln_1.bias": "model-00001-of-00003.safetensors",
|
312 |
+
"vision_tower.transformer.resblocks.0.ln_1.weight": "model-00001-of-00003.safetensors",
|
313 |
+
"vision_tower.transformer.resblocks.0.ln_2.bias": "model-00001-of-00003.safetensors",
|
314 |
+
"vision_tower.transformer.resblocks.0.ln_2.weight": "model-00001-of-00003.safetensors",
|
315 |
+
"vision_tower.transformer.resblocks.0.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
316 |
+
"vision_tower.transformer.resblocks.0.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
317 |
+
"vision_tower.transformer.resblocks.0.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
318 |
+
"vision_tower.transformer.resblocks.0.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
319 |
+
"vision_tower.transformer.resblocks.1.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
320 |
+
"vision_tower.transformer.resblocks.1.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
321 |
+
"vision_tower.transformer.resblocks.1.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
322 |
+
"vision_tower.transformer.resblocks.1.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
323 |
+
"vision_tower.transformer.resblocks.1.ln_1.bias": "model-00001-of-00003.safetensors",
|
324 |
+
"vision_tower.transformer.resblocks.1.ln_1.weight": "model-00001-of-00003.safetensors",
|
325 |
+
"vision_tower.transformer.resblocks.1.ln_2.bias": "model-00001-of-00003.safetensors",
|
326 |
+
"vision_tower.transformer.resblocks.1.ln_2.weight": "model-00001-of-00003.safetensors",
|
327 |
+
"vision_tower.transformer.resblocks.1.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
328 |
+
"vision_tower.transformer.resblocks.1.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
329 |
+
"vision_tower.transformer.resblocks.1.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
330 |
+
"vision_tower.transformer.resblocks.1.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
331 |
+
"vision_tower.transformer.resblocks.10.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
332 |
+
"vision_tower.transformer.resblocks.10.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
333 |
+
"vision_tower.transformer.resblocks.10.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
334 |
+
"vision_tower.transformer.resblocks.10.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
335 |
+
"vision_tower.transformer.resblocks.10.ln_1.bias": "model-00001-of-00003.safetensors",
|
336 |
+
"vision_tower.transformer.resblocks.10.ln_1.weight": "model-00001-of-00003.safetensors",
|
337 |
+
"vision_tower.transformer.resblocks.10.ln_2.bias": "model-00001-of-00003.safetensors",
|
338 |
+
"vision_tower.transformer.resblocks.10.ln_2.weight": "model-00001-of-00003.safetensors",
|
339 |
+
"vision_tower.transformer.resblocks.10.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
340 |
+
"vision_tower.transformer.resblocks.10.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
341 |
+
"vision_tower.transformer.resblocks.10.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
342 |
+
"vision_tower.transformer.resblocks.10.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
343 |
+
"vision_tower.transformer.resblocks.11.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
344 |
+
"vision_tower.transformer.resblocks.11.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
345 |
+
"vision_tower.transformer.resblocks.11.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
346 |
+
"vision_tower.transformer.resblocks.11.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
347 |
+
"vision_tower.transformer.resblocks.11.ln_1.bias": "model-00001-of-00003.safetensors",
|
348 |
+
"vision_tower.transformer.resblocks.11.ln_1.weight": "model-00001-of-00003.safetensors",
|
349 |
+
"vision_tower.transformer.resblocks.11.ln_2.bias": "model-00001-of-00003.safetensors",
|
350 |
+
"vision_tower.transformer.resblocks.11.ln_2.weight": "model-00001-of-00003.safetensors",
|
351 |
+
"vision_tower.transformer.resblocks.11.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
352 |
+
"vision_tower.transformer.resblocks.11.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
353 |
+
"vision_tower.transformer.resblocks.11.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
354 |
+
"vision_tower.transformer.resblocks.11.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
355 |
+
"vision_tower.transformer.resblocks.12.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
356 |
+
"vision_tower.transformer.resblocks.12.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
357 |
+
"vision_tower.transformer.resblocks.12.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
358 |
+
"vision_tower.transformer.resblocks.12.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
359 |
+
"vision_tower.transformer.resblocks.12.ln_1.bias": "model-00001-of-00003.safetensors",
|
360 |
+
"vision_tower.transformer.resblocks.12.ln_1.weight": "model-00001-of-00003.safetensors",
|
361 |
+
"vision_tower.transformer.resblocks.12.ln_2.bias": "model-00001-of-00003.safetensors",
|
362 |
+
"vision_tower.transformer.resblocks.12.ln_2.weight": "model-00001-of-00003.safetensors",
|
363 |
+
"vision_tower.transformer.resblocks.12.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
364 |
+
"vision_tower.transformer.resblocks.12.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
365 |
+
"vision_tower.transformer.resblocks.12.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
366 |
+
"vision_tower.transformer.resblocks.12.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
367 |
+
"vision_tower.transformer.resblocks.13.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
368 |
+
"vision_tower.transformer.resblocks.13.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
369 |
+
"vision_tower.transformer.resblocks.13.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
370 |
+
"vision_tower.transformer.resblocks.13.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
371 |
+
"vision_tower.transformer.resblocks.13.ln_1.bias": "model-00001-of-00003.safetensors",
|
372 |
+
"vision_tower.transformer.resblocks.13.ln_1.weight": "model-00001-of-00003.safetensors",
|
373 |
+
"vision_tower.transformer.resblocks.13.ln_2.bias": "model-00001-of-00003.safetensors",
|
374 |
+
"vision_tower.transformer.resblocks.13.ln_2.weight": "model-00001-of-00003.safetensors",
|
375 |
+
"vision_tower.transformer.resblocks.13.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
376 |
+
"vision_tower.transformer.resblocks.13.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
377 |
+
"vision_tower.transformer.resblocks.13.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
378 |
+
"vision_tower.transformer.resblocks.13.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
379 |
+
"vision_tower.transformer.resblocks.14.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
380 |
+
"vision_tower.transformer.resblocks.14.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
381 |
+
"vision_tower.transformer.resblocks.14.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
382 |
+
"vision_tower.transformer.resblocks.14.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
383 |
+
"vision_tower.transformer.resblocks.14.ln_1.bias": "model-00001-of-00003.safetensors",
|
384 |
+
"vision_tower.transformer.resblocks.14.ln_1.weight": "model-00001-of-00003.safetensors",
|
385 |
+
"vision_tower.transformer.resblocks.14.ln_2.bias": "model-00001-of-00003.safetensors",
|
386 |
+
"vision_tower.transformer.resblocks.14.ln_2.weight": "model-00001-of-00003.safetensors",
|
387 |
+
"vision_tower.transformer.resblocks.14.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
388 |
+
"vision_tower.transformer.resblocks.14.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
389 |
+
"vision_tower.transformer.resblocks.14.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
390 |
+
"vision_tower.transformer.resblocks.14.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
391 |
+
"vision_tower.transformer.resblocks.15.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
392 |
+
"vision_tower.transformer.resblocks.15.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
393 |
+
"vision_tower.transformer.resblocks.15.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
394 |
+
"vision_tower.transformer.resblocks.15.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
395 |
+
"vision_tower.transformer.resblocks.15.ln_1.bias": "model-00001-of-00003.safetensors",
|
396 |
+
"vision_tower.transformer.resblocks.15.ln_1.weight": "model-00001-of-00003.safetensors",
|
397 |
+
"vision_tower.transformer.resblocks.15.ln_2.bias": "model-00001-of-00003.safetensors",
|
398 |
+
"vision_tower.transformer.resblocks.15.ln_2.weight": "model-00001-of-00003.safetensors",
|
399 |
+
"vision_tower.transformer.resblocks.15.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
400 |
+
"vision_tower.transformer.resblocks.15.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
401 |
+
"vision_tower.transformer.resblocks.15.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
402 |
+
"vision_tower.transformer.resblocks.15.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
403 |
+
"vision_tower.transformer.resblocks.16.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
404 |
+
"vision_tower.transformer.resblocks.16.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
405 |
+
"vision_tower.transformer.resblocks.16.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
406 |
+
"vision_tower.transformer.resblocks.16.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
407 |
+
"vision_tower.transformer.resblocks.16.ln_1.bias": "model-00001-of-00003.safetensors",
|
408 |
+
"vision_tower.transformer.resblocks.16.ln_1.weight": "model-00001-of-00003.safetensors",
|
409 |
+
"vision_tower.transformer.resblocks.16.ln_2.bias": "model-00001-of-00003.safetensors",
|
410 |
+
"vision_tower.transformer.resblocks.16.ln_2.weight": "model-00001-of-00003.safetensors",
|
411 |
+
"vision_tower.transformer.resblocks.16.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
412 |
+
"vision_tower.transformer.resblocks.16.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
413 |
+
"vision_tower.transformer.resblocks.16.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
414 |
+
"vision_tower.transformer.resblocks.16.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
415 |
+
"vision_tower.transformer.resblocks.17.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
416 |
+
"vision_tower.transformer.resblocks.17.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
417 |
+
"vision_tower.transformer.resblocks.17.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
418 |
+
"vision_tower.transformer.resblocks.17.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
419 |
+
"vision_tower.transformer.resblocks.17.ln_1.bias": "model-00001-of-00003.safetensors",
|
420 |
+
"vision_tower.transformer.resblocks.17.ln_1.weight": "model-00001-of-00003.safetensors",
|
421 |
+
"vision_tower.transformer.resblocks.17.ln_2.bias": "model-00001-of-00003.safetensors",
|
422 |
+
"vision_tower.transformer.resblocks.17.ln_2.weight": "model-00001-of-00003.safetensors",
|
423 |
+
"vision_tower.transformer.resblocks.17.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
424 |
+
"vision_tower.transformer.resblocks.17.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
425 |
+
"vision_tower.transformer.resblocks.17.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
426 |
+
"vision_tower.transformer.resblocks.17.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
427 |
+
"vision_tower.transformer.resblocks.18.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
428 |
+
"vision_tower.transformer.resblocks.18.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
429 |
+
"vision_tower.transformer.resblocks.18.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
430 |
+
"vision_tower.transformer.resblocks.18.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
431 |
+
"vision_tower.transformer.resblocks.18.ln_1.bias": "model-00001-of-00003.safetensors",
|
432 |
+
"vision_tower.transformer.resblocks.18.ln_1.weight": "model-00001-of-00003.safetensors",
|
433 |
+
"vision_tower.transformer.resblocks.18.ln_2.bias": "model-00001-of-00003.safetensors",
|
434 |
+
"vision_tower.transformer.resblocks.18.ln_2.weight": "model-00001-of-00003.safetensors",
|
435 |
+
"vision_tower.transformer.resblocks.18.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
436 |
+
"vision_tower.transformer.resblocks.18.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
437 |
+
"vision_tower.transformer.resblocks.18.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
438 |
+
"vision_tower.transformer.resblocks.18.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
439 |
+
"vision_tower.transformer.resblocks.19.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
440 |
+
"vision_tower.transformer.resblocks.19.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
441 |
+
"vision_tower.transformer.resblocks.19.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
442 |
+
"vision_tower.transformer.resblocks.19.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
443 |
+
"vision_tower.transformer.resblocks.19.ln_1.bias": "model-00001-of-00003.safetensors",
|
444 |
+
"vision_tower.transformer.resblocks.19.ln_1.weight": "model-00001-of-00003.safetensors",
|
445 |
+
"vision_tower.transformer.resblocks.19.ln_2.bias": "model-00001-of-00003.safetensors",
|
446 |
+
"vision_tower.transformer.resblocks.19.ln_2.weight": "model-00001-of-00003.safetensors",
|
447 |
+
"vision_tower.transformer.resblocks.19.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
448 |
+
"vision_tower.transformer.resblocks.19.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
449 |
+
"vision_tower.transformer.resblocks.19.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
450 |
+
"vision_tower.transformer.resblocks.19.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
451 |
+
"vision_tower.transformer.resblocks.2.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
452 |
+
"vision_tower.transformer.resblocks.2.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
453 |
+
"vision_tower.transformer.resblocks.2.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
454 |
+
"vision_tower.transformer.resblocks.2.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
455 |
+
"vision_tower.transformer.resblocks.2.ln_1.bias": "model-00001-of-00003.safetensors",
|
456 |
+
"vision_tower.transformer.resblocks.2.ln_1.weight": "model-00001-of-00003.safetensors",
|
457 |
+
"vision_tower.transformer.resblocks.2.ln_2.bias": "model-00001-of-00003.safetensors",
|
458 |
+
"vision_tower.transformer.resblocks.2.ln_2.weight": "model-00001-of-00003.safetensors",
|
459 |
+
"vision_tower.transformer.resblocks.2.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
460 |
+
"vision_tower.transformer.resblocks.2.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
461 |
+
"vision_tower.transformer.resblocks.2.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
462 |
+
"vision_tower.transformer.resblocks.2.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
463 |
+
"vision_tower.transformer.resblocks.20.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
464 |
+
"vision_tower.transformer.resblocks.20.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
465 |
+
"vision_tower.transformer.resblocks.20.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
466 |
+
"vision_tower.transformer.resblocks.20.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
467 |
+
"vision_tower.transformer.resblocks.20.ln_1.bias": "model-00001-of-00003.safetensors",
|
468 |
+
"vision_tower.transformer.resblocks.20.ln_1.weight": "model-00001-of-00003.safetensors",
|
469 |
+
"vision_tower.transformer.resblocks.20.ln_2.bias": "model-00001-of-00003.safetensors",
|
470 |
+
"vision_tower.transformer.resblocks.20.ln_2.weight": "model-00001-of-00003.safetensors",
|
471 |
+
"vision_tower.transformer.resblocks.20.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
472 |
+
"vision_tower.transformer.resblocks.20.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
473 |
+
"vision_tower.transformer.resblocks.20.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
474 |
+
"vision_tower.transformer.resblocks.20.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
475 |
+
"vision_tower.transformer.resblocks.21.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
476 |
+
"vision_tower.transformer.resblocks.21.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
477 |
+
"vision_tower.transformer.resblocks.21.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
478 |
+
"vision_tower.transformer.resblocks.21.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
479 |
+
"vision_tower.transformer.resblocks.21.ln_1.bias": "model-00001-of-00003.safetensors",
|
480 |
+
"vision_tower.transformer.resblocks.21.ln_1.weight": "model-00001-of-00003.safetensors",
|
481 |
+
"vision_tower.transformer.resblocks.21.ln_2.bias": "model-00001-of-00003.safetensors",
|
482 |
+
"vision_tower.transformer.resblocks.21.ln_2.weight": "model-00001-of-00003.safetensors",
|
483 |
+
"vision_tower.transformer.resblocks.21.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
484 |
+
"vision_tower.transformer.resblocks.21.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
485 |
+
"vision_tower.transformer.resblocks.21.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
486 |
+
"vision_tower.transformer.resblocks.21.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
487 |
+
"vision_tower.transformer.resblocks.22.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
488 |
+
"vision_tower.transformer.resblocks.22.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
489 |
+
"vision_tower.transformer.resblocks.22.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
490 |
+
"vision_tower.transformer.resblocks.22.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
491 |
+
"vision_tower.transformer.resblocks.22.ln_1.bias": "model-00001-of-00003.safetensors",
|
492 |
+
"vision_tower.transformer.resblocks.22.ln_1.weight": "model-00001-of-00003.safetensors",
|
493 |
+
"vision_tower.transformer.resblocks.22.ln_2.bias": "model-00001-of-00003.safetensors",
|
494 |
+
"vision_tower.transformer.resblocks.22.ln_2.weight": "model-00001-of-00003.safetensors",
|
495 |
+
"vision_tower.transformer.resblocks.22.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
496 |
+
"vision_tower.transformer.resblocks.22.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
497 |
+
"vision_tower.transformer.resblocks.22.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
498 |
+
"vision_tower.transformer.resblocks.22.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
499 |
+
"vision_tower.transformer.resblocks.23.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
500 |
+
"vision_tower.transformer.resblocks.23.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
501 |
+
"vision_tower.transformer.resblocks.23.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
502 |
+
"vision_tower.transformer.resblocks.23.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
503 |
+
"vision_tower.transformer.resblocks.23.ln_1.bias": "model-00001-of-00003.safetensors",
|
504 |
+
"vision_tower.transformer.resblocks.23.ln_1.weight": "model-00001-of-00003.safetensors",
|
505 |
+
"vision_tower.transformer.resblocks.23.ln_2.bias": "model-00001-of-00003.safetensors",
|
506 |
+
"vision_tower.transformer.resblocks.23.ln_2.weight": "model-00001-of-00003.safetensors",
|
507 |
+
"vision_tower.transformer.resblocks.23.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
508 |
+
"vision_tower.transformer.resblocks.23.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
509 |
+
"vision_tower.transformer.resblocks.23.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
510 |
+
"vision_tower.transformer.resblocks.23.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
511 |
+
"vision_tower.transformer.resblocks.3.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
512 |
+
"vision_tower.transformer.resblocks.3.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
513 |
+
"vision_tower.transformer.resblocks.3.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
514 |
+
"vision_tower.transformer.resblocks.3.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
515 |
+
"vision_tower.transformer.resblocks.3.ln_1.bias": "model-00001-of-00003.safetensors",
|
516 |
+
"vision_tower.transformer.resblocks.3.ln_1.weight": "model-00001-of-00003.safetensors",
|
517 |
+
"vision_tower.transformer.resblocks.3.ln_2.bias": "model-00001-of-00003.safetensors",
|
518 |
+
"vision_tower.transformer.resblocks.3.ln_2.weight": "model-00001-of-00003.safetensors",
|
519 |
+
"vision_tower.transformer.resblocks.3.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
520 |
+
"vision_tower.transformer.resblocks.3.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
521 |
+
"vision_tower.transformer.resblocks.3.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
522 |
+
"vision_tower.transformer.resblocks.3.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
523 |
+
"vision_tower.transformer.resblocks.4.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
524 |
+
"vision_tower.transformer.resblocks.4.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
525 |
+
"vision_tower.transformer.resblocks.4.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
526 |
+
"vision_tower.transformer.resblocks.4.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
527 |
+
"vision_tower.transformer.resblocks.4.ln_1.bias": "model-00001-of-00003.safetensors",
|
528 |
+
"vision_tower.transformer.resblocks.4.ln_1.weight": "model-00001-of-00003.safetensors",
|
529 |
+
"vision_tower.transformer.resblocks.4.ln_2.bias": "model-00001-of-00003.safetensors",
|
530 |
+
"vision_tower.transformer.resblocks.4.ln_2.weight": "model-00001-of-00003.safetensors",
|
531 |
+
"vision_tower.transformer.resblocks.4.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
532 |
+
"vision_tower.transformer.resblocks.4.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
533 |
+
"vision_tower.transformer.resblocks.4.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
534 |
+
"vision_tower.transformer.resblocks.4.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
535 |
+
"vision_tower.transformer.resblocks.5.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
536 |
+
"vision_tower.transformer.resblocks.5.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
537 |
+
"vision_tower.transformer.resblocks.5.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
538 |
+
"vision_tower.transformer.resblocks.5.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
539 |
+
"vision_tower.transformer.resblocks.5.ln_1.bias": "model-00001-of-00003.safetensors",
|
540 |
+
"vision_tower.transformer.resblocks.5.ln_1.weight": "model-00001-of-00003.safetensors",
|
541 |
+
"vision_tower.transformer.resblocks.5.ln_2.bias": "model-00001-of-00003.safetensors",
|
542 |
+
"vision_tower.transformer.resblocks.5.ln_2.weight": "model-00001-of-00003.safetensors",
|
543 |
+
"vision_tower.transformer.resblocks.5.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
544 |
+
"vision_tower.transformer.resblocks.5.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
545 |
+
"vision_tower.transformer.resblocks.5.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
546 |
+
"vision_tower.transformer.resblocks.5.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
547 |
+
"vision_tower.transformer.resblocks.6.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
548 |
+
"vision_tower.transformer.resblocks.6.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
549 |
+
"vision_tower.transformer.resblocks.6.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
550 |
+
"vision_tower.transformer.resblocks.6.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
551 |
+
"vision_tower.transformer.resblocks.6.ln_1.bias": "model-00001-of-00003.safetensors",
|
552 |
+
"vision_tower.transformer.resblocks.6.ln_1.weight": "model-00001-of-00003.safetensors",
|
553 |
+
"vision_tower.transformer.resblocks.6.ln_2.bias": "model-00001-of-00003.safetensors",
|
554 |
+
"vision_tower.transformer.resblocks.6.ln_2.weight": "model-00001-of-00003.safetensors",
|
555 |
+
"vision_tower.transformer.resblocks.6.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
556 |
+
"vision_tower.transformer.resblocks.6.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
557 |
+
"vision_tower.transformer.resblocks.6.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
558 |
+
"vision_tower.transformer.resblocks.6.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
559 |
+
"vision_tower.transformer.resblocks.7.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
560 |
+
"vision_tower.transformer.resblocks.7.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
561 |
+
"vision_tower.transformer.resblocks.7.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
562 |
+
"vision_tower.transformer.resblocks.7.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
563 |
+
"vision_tower.transformer.resblocks.7.ln_1.bias": "model-00001-of-00003.safetensors",
|
564 |
+
"vision_tower.transformer.resblocks.7.ln_1.weight": "model-00001-of-00003.safetensors",
|
565 |
+
"vision_tower.transformer.resblocks.7.ln_2.bias": "model-00001-of-00003.safetensors",
|
566 |
+
"vision_tower.transformer.resblocks.7.ln_2.weight": "model-00001-of-00003.safetensors",
|
567 |
+
"vision_tower.transformer.resblocks.7.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
568 |
+
"vision_tower.transformer.resblocks.7.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
569 |
+
"vision_tower.transformer.resblocks.7.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
570 |
+
"vision_tower.transformer.resblocks.7.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
571 |
+
"vision_tower.transformer.resblocks.8.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
572 |
+
"vision_tower.transformer.resblocks.8.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
573 |
+
"vision_tower.transformer.resblocks.8.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
574 |
+
"vision_tower.transformer.resblocks.8.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
575 |
+
"vision_tower.transformer.resblocks.8.ln_1.bias": "model-00001-of-00003.safetensors",
|
576 |
+
"vision_tower.transformer.resblocks.8.ln_1.weight": "model-00001-of-00003.safetensors",
|
577 |
+
"vision_tower.transformer.resblocks.8.ln_2.bias": "model-00001-of-00003.safetensors",
|
578 |
+
"vision_tower.transformer.resblocks.8.ln_2.weight": "model-00001-of-00003.safetensors",
|
579 |
+
"vision_tower.transformer.resblocks.8.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
580 |
+
"vision_tower.transformer.resblocks.8.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
581 |
+
"vision_tower.transformer.resblocks.8.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
582 |
+
"vision_tower.transformer.resblocks.8.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
|
583 |
+
"vision_tower.transformer.resblocks.9.attn.in_proj_bias": "model-00001-of-00003.safetensors",
|
584 |
+
"vision_tower.transformer.resblocks.9.attn.in_proj_weight": "model-00001-of-00003.safetensors",
|
585 |
+
"vision_tower.transformer.resblocks.9.attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
586 |
+
"vision_tower.transformer.resblocks.9.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
587 |
+
"vision_tower.transformer.resblocks.9.ln_1.bias": "model-00001-of-00003.safetensors",
|
588 |
+
"vision_tower.transformer.resblocks.9.ln_1.weight": "model-00001-of-00003.safetensors",
|
589 |
+
"vision_tower.transformer.resblocks.9.ln_2.bias": "model-00001-of-00003.safetensors",
|
590 |
+
"vision_tower.transformer.resblocks.9.ln_2.weight": "model-00001-of-00003.safetensors",
|
591 |
+
"vision_tower.transformer.resblocks.9.mlp.c_fc.bias": "model-00001-of-00003.safetensors",
|
592 |
+
"vision_tower.transformer.resblocks.9.mlp.c_fc.weight": "model-00001-of-00003.safetensors",
|
593 |
+
"vision_tower.transformer.resblocks.9.mlp.c_proj.bias": "model-00001-of-00003.safetensors",
|
594 |
+
"vision_tower.transformer.resblocks.9.mlp.c_proj.weight": "model-00001-of-00003.safetensors"
|
595 |
+
}
|
596 |
+
}
|
pytorch_model-00001-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8687c706d0d68518b4636a40eeaafed137946620c164f77473484e86f20c540a
|
3 |
+
size 9955046591
|
pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1179867a0a8cb96669b8c46670bd82928c6597e805982c623652a0bda776b4da
|
3 |
+
size 4137901382
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14092742656
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"llama.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
|
7 |
+
"llama.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"llama.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"llama.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"llama.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"llama.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"llama.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"llama.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"llama.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"llama.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"llama.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"llama.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"llama.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"llama.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"llama.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"llama.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"llama.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"llama.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"llama.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"llama.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"llama.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"llama.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"llama.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"llama.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"llama.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"llama.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"llama.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"llama.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"llama.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"llama.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"llama.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"llama.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"llama.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"llama.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"llama.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"llama.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"llama.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"llama.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"llama.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"llama.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"llama.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"llama.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"llama.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"llama.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"llama.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"llama.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"llama.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"llama.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"llama.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"llama.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"llama.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"llama.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"llama.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"llama.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"llama.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"llama.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"llama.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"llama.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"llama.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"llama.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"llama.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"llama.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"llama.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
69 |
+
"llama.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
+
"llama.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
+
"llama.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
72 |
+
"llama.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
+
"llama.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"llama.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
+
"llama.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"llama.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
77 |
+
"llama.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"llama.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
79 |
+
"llama.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
80 |
+
"llama.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"llama.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"llama.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"llama.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"llama.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"llama.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"llama.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"llama.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"llama.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"llama.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"llama.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"llama.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"llama.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"llama.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"llama.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"llama.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"llama.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"llama.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"llama.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"llama.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
+
"llama.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"llama.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"llama.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"llama.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
104 |
+
"llama.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
105 |
+
"llama.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
106 |
+
"llama.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
107 |
+
"llama.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
108 |
+
"llama.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
+
"llama.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
+
"llama.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
111 |
+
"llama.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
112 |
+
"llama.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
+
"llama.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
+
"llama.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
+
"llama.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"llama.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"llama.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"llama.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"llama.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"llama.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"llama.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"llama.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"llama.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"llama.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
125 |
+
"llama.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
126 |
+
"llama.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
127 |
+
"llama.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
128 |
+
"llama.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
129 |
+
"llama.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
+
"llama.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
131 |
+
"llama.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
+
"llama.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
133 |
+
"llama.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
134 |
+
"llama.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
135 |
+
"llama.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
+
"llama.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
137 |
+
"llama.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
138 |
+
"llama.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
139 |
+
"llama.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
140 |
+
"llama.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
+
"llama.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
142 |
+
"llama.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
143 |
+
"llama.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
144 |
+
"llama.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
145 |
+
"llama.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
146 |
+
"llama.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
147 |
+
"llama.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
148 |
+
"llama.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
149 |
+
"llama.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
150 |
+
"llama.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
151 |
+
"llama.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
152 |
+
"llama.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
153 |
+
"llama.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
154 |
+
"llama.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
155 |
+
"llama.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
156 |
+
"llama.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
157 |
+
"llama.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
158 |
+
"llama.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
159 |
+
"llama.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
160 |
+
"llama.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
161 |
+
"llama.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
162 |
+
"llama.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
163 |
+
"llama.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
164 |
+
"llama.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
165 |
+
"llama.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
166 |
+
"llama.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
167 |
+
"llama.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
168 |
+
"llama.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
169 |
+
"llama.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
170 |
+
"llama.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
171 |
+
"llama.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
172 |
+
"llama.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
173 |
+
"llama.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
174 |
+
"llama.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
175 |
+
"llama.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
176 |
+
"llama.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
177 |
+
"llama.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
178 |
+
"llama.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
179 |
+
"llama.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
180 |
+
"llama.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
181 |
+
"llama.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
182 |
+
"llama.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
183 |
+
"llama.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
184 |
+
"llama.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
185 |
+
"llama.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
186 |
+
"llama.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
187 |
+
"llama.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
188 |
+
"llama.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
189 |
+
"llama.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
190 |
+
"llama.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
191 |
+
"llama.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
192 |
+
"llama.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
193 |
+
"llama.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
194 |
+
"llama.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
195 |
+
"llama.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
196 |
+
"llama.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
197 |
+
"llama.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
198 |
+
"llama.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
199 |
+
"llama.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
200 |
+
"llama.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
201 |
+
"llama.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
202 |
+
"llama.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
203 |
+
"llama.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
204 |
+
"llama.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
205 |
+
"llama.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
206 |
+
"llama.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
207 |
+
"llama.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
208 |
+
"llama.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
209 |
+
"llama.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
210 |
+
"llama.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
211 |
+
"llama.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
212 |
+
"llama.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
213 |
+
"llama.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
214 |
+
"llama.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
215 |
+
"llama.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
216 |
+
"llama.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
217 |
+
"llama.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
218 |
+
"llama.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
219 |
+
"llama.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
220 |
+
"llama.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
221 |
+
"llama.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
222 |
+
"llama.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
223 |
+
"llama.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
224 |
+
"llama.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
225 |
+
"llama.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
226 |
+
"llama.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
227 |
+
"llama.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
228 |
+
"llama.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
229 |
+
"llama.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
230 |
+
"llama.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
231 |
+
"llama.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
232 |
+
"llama.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
233 |
+
"llama.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
234 |
+
"llama.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
235 |
+
"llama.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
236 |
+
"llama.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
237 |
+
"llama.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
238 |
+
"llama.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
239 |
+
"llama.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
240 |
+
"llama.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
241 |
+
"llama.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
242 |
+
"llama.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
243 |
+
"llama.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
244 |
+
"llama.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
245 |
+
"llama.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
246 |
+
"llama.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
247 |
+
"llama.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
248 |
+
"llama.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
249 |
+
"llama.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
250 |
+
"llama.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
251 |
+
"llama.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
252 |
+
"llama.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
253 |
+
"llama.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
254 |
+
"llama.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
255 |
+
"llama.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
256 |
+
"llama.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
257 |
+
"llama.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
258 |
+
"llama.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
259 |
+
"llama.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
260 |
+
"llama.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
261 |
+
"llama.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
262 |
+
"llama.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
263 |
+
"llama.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
264 |
+
"llama.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
265 |
+
"llama.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
266 |
+
"llama.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
267 |
+
"llama.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
268 |
+
"llama.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
269 |
+
"llama.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
270 |
+
"llama.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
271 |
+
"llama.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
272 |
+
"llama.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
273 |
+
"llama.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
274 |
+
"llama.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
275 |
+
"llama.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
276 |
+
"llama.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
277 |
+
"llama.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
278 |
+
"llama.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
279 |
+
"llama.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
280 |
+
"llama.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
281 |
+
"llama.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
282 |
+
"llama.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
283 |
+
"llama.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
284 |
+
"llama.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
285 |
+
"llama.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
286 |
+
"llama.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
287 |
+
"llama.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
288 |
+
"llama.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
289 |
+
"llama.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
290 |
+
"llama.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
291 |
+
"llama.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
292 |
+
"llama.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
293 |
+
"llama.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
294 |
+
"llama.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
295 |
+
"llama.norm.weight": "pytorch_model-00002-of-00002.bin",
|
296 |
+
"lm_head.weight": "pytorch_model-00001-of-00002.bin",
|
297 |
+
"mm_projector.bias": "pytorch_model-00001-of-00002.bin",
|
298 |
+
"mm_projector.weight": "pytorch_model-00001-of-00002.bin",
|
299 |
+
"vision_tower.class_embedding": "pytorch_model-00001-of-00002.bin",
|
300 |
+
"vision_tower.conv1.weight": "pytorch_model-00001-of-00002.bin",
|
301 |
+
"vision_tower.ln_post.bias": "pytorch_model-00001-of-00002.bin",
|
302 |
+
"vision_tower.ln_post.weight": "pytorch_model-00001-of-00002.bin",
|
303 |
+
"vision_tower.ln_pre.bias": "pytorch_model-00001-of-00002.bin",
|
304 |
+
"vision_tower.ln_pre.weight": "pytorch_model-00001-of-00002.bin",
|
305 |
+
"vision_tower.positional_embedding": "pytorch_model-00001-of-00002.bin",
|
306 |
+
"vision_tower.proj": "pytorch_model-00001-of-00002.bin",
|
307 |
+
"vision_tower.transformer.resblocks.0.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
308 |
+
"vision_tower.transformer.resblocks.0.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
309 |
+
"vision_tower.transformer.resblocks.0.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
310 |
+
"vision_tower.transformer.resblocks.0.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
311 |
+
"vision_tower.transformer.resblocks.0.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
312 |
+
"vision_tower.transformer.resblocks.0.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
313 |
+
"vision_tower.transformer.resblocks.0.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
314 |
+
"vision_tower.transformer.resblocks.0.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
315 |
+
"vision_tower.transformer.resblocks.0.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
316 |
+
"vision_tower.transformer.resblocks.0.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
317 |
+
"vision_tower.transformer.resblocks.0.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
318 |
+
"vision_tower.transformer.resblocks.0.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
319 |
+
"vision_tower.transformer.resblocks.1.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
320 |
+
"vision_tower.transformer.resblocks.1.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
321 |
+
"vision_tower.transformer.resblocks.1.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
322 |
+
"vision_tower.transformer.resblocks.1.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
323 |
+
"vision_tower.transformer.resblocks.1.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
324 |
+
"vision_tower.transformer.resblocks.1.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
325 |
+
"vision_tower.transformer.resblocks.1.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
326 |
+
"vision_tower.transformer.resblocks.1.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
327 |
+
"vision_tower.transformer.resblocks.1.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
328 |
+
"vision_tower.transformer.resblocks.1.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
329 |
+
"vision_tower.transformer.resblocks.1.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
330 |
+
"vision_tower.transformer.resblocks.1.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
331 |
+
"vision_tower.transformer.resblocks.10.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
332 |
+
"vision_tower.transformer.resblocks.10.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
333 |
+
"vision_tower.transformer.resblocks.10.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
334 |
+
"vision_tower.transformer.resblocks.10.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
335 |
+
"vision_tower.transformer.resblocks.10.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
336 |
+
"vision_tower.transformer.resblocks.10.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
337 |
+
"vision_tower.transformer.resblocks.10.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
338 |
+
"vision_tower.transformer.resblocks.10.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
339 |
+
"vision_tower.transformer.resblocks.10.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
340 |
+
"vision_tower.transformer.resblocks.10.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
341 |
+
"vision_tower.transformer.resblocks.10.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
342 |
+
"vision_tower.transformer.resblocks.10.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
343 |
+
"vision_tower.transformer.resblocks.11.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
344 |
+
"vision_tower.transformer.resblocks.11.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
345 |
+
"vision_tower.transformer.resblocks.11.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
346 |
+
"vision_tower.transformer.resblocks.11.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
347 |
+
"vision_tower.transformer.resblocks.11.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
348 |
+
"vision_tower.transformer.resblocks.11.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
349 |
+
"vision_tower.transformer.resblocks.11.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
350 |
+
"vision_tower.transformer.resblocks.11.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
351 |
+
"vision_tower.transformer.resblocks.11.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
352 |
+
"vision_tower.transformer.resblocks.11.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
353 |
+
"vision_tower.transformer.resblocks.11.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
354 |
+
"vision_tower.transformer.resblocks.11.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
355 |
+
"vision_tower.transformer.resblocks.12.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
356 |
+
"vision_tower.transformer.resblocks.12.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
357 |
+
"vision_tower.transformer.resblocks.12.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
358 |
+
"vision_tower.transformer.resblocks.12.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
359 |
+
"vision_tower.transformer.resblocks.12.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
360 |
+
"vision_tower.transformer.resblocks.12.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
361 |
+
"vision_tower.transformer.resblocks.12.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
362 |
+
"vision_tower.transformer.resblocks.12.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
363 |
+
"vision_tower.transformer.resblocks.12.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
364 |
+
"vision_tower.transformer.resblocks.12.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
365 |
+
"vision_tower.transformer.resblocks.12.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
366 |
+
"vision_tower.transformer.resblocks.12.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
367 |
+
"vision_tower.transformer.resblocks.13.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
368 |
+
"vision_tower.transformer.resblocks.13.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
369 |
+
"vision_tower.transformer.resblocks.13.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
370 |
+
"vision_tower.transformer.resblocks.13.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
371 |
+
"vision_tower.transformer.resblocks.13.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
372 |
+
"vision_tower.transformer.resblocks.13.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
373 |
+
"vision_tower.transformer.resblocks.13.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
374 |
+
"vision_tower.transformer.resblocks.13.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
375 |
+
"vision_tower.transformer.resblocks.13.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
376 |
+
"vision_tower.transformer.resblocks.13.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
377 |
+
"vision_tower.transformer.resblocks.13.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
378 |
+
"vision_tower.transformer.resblocks.13.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
379 |
+
"vision_tower.transformer.resblocks.14.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
380 |
+
"vision_tower.transformer.resblocks.14.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
381 |
+
"vision_tower.transformer.resblocks.14.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
382 |
+
"vision_tower.transformer.resblocks.14.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
383 |
+
"vision_tower.transformer.resblocks.14.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
384 |
+
"vision_tower.transformer.resblocks.14.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
385 |
+
"vision_tower.transformer.resblocks.14.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
386 |
+
"vision_tower.transformer.resblocks.14.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
387 |
+
"vision_tower.transformer.resblocks.14.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
388 |
+
"vision_tower.transformer.resblocks.14.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
389 |
+
"vision_tower.transformer.resblocks.14.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
390 |
+
"vision_tower.transformer.resblocks.14.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
391 |
+
"vision_tower.transformer.resblocks.15.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
392 |
+
"vision_tower.transformer.resblocks.15.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
393 |
+
"vision_tower.transformer.resblocks.15.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
394 |
+
"vision_tower.transformer.resblocks.15.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
395 |
+
"vision_tower.transformer.resblocks.15.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
396 |
+
"vision_tower.transformer.resblocks.15.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
397 |
+
"vision_tower.transformer.resblocks.15.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
398 |
+
"vision_tower.transformer.resblocks.15.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
399 |
+
"vision_tower.transformer.resblocks.15.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
400 |
+
"vision_tower.transformer.resblocks.15.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
401 |
+
"vision_tower.transformer.resblocks.15.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
402 |
+
"vision_tower.transformer.resblocks.15.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
403 |
+
"vision_tower.transformer.resblocks.16.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
404 |
+
"vision_tower.transformer.resblocks.16.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
405 |
+
"vision_tower.transformer.resblocks.16.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
406 |
+
"vision_tower.transformer.resblocks.16.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
407 |
+
"vision_tower.transformer.resblocks.16.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
408 |
+
"vision_tower.transformer.resblocks.16.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
409 |
+
"vision_tower.transformer.resblocks.16.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
410 |
+
"vision_tower.transformer.resblocks.16.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
411 |
+
"vision_tower.transformer.resblocks.16.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
412 |
+
"vision_tower.transformer.resblocks.16.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
413 |
+
"vision_tower.transformer.resblocks.16.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
414 |
+
"vision_tower.transformer.resblocks.16.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
415 |
+
"vision_tower.transformer.resblocks.17.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
416 |
+
"vision_tower.transformer.resblocks.17.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
417 |
+
"vision_tower.transformer.resblocks.17.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
418 |
+
"vision_tower.transformer.resblocks.17.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
419 |
+
"vision_tower.transformer.resblocks.17.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
420 |
+
"vision_tower.transformer.resblocks.17.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
421 |
+
"vision_tower.transformer.resblocks.17.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
422 |
+
"vision_tower.transformer.resblocks.17.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
423 |
+
"vision_tower.transformer.resblocks.17.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
424 |
+
"vision_tower.transformer.resblocks.17.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
425 |
+
"vision_tower.transformer.resblocks.17.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
426 |
+
"vision_tower.transformer.resblocks.17.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
427 |
+
"vision_tower.transformer.resblocks.18.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
428 |
+
"vision_tower.transformer.resblocks.18.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
429 |
+
"vision_tower.transformer.resblocks.18.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
430 |
+
"vision_tower.transformer.resblocks.18.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
431 |
+
"vision_tower.transformer.resblocks.18.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
432 |
+
"vision_tower.transformer.resblocks.18.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
433 |
+
"vision_tower.transformer.resblocks.18.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
434 |
+
"vision_tower.transformer.resblocks.18.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
435 |
+
"vision_tower.transformer.resblocks.18.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
436 |
+
"vision_tower.transformer.resblocks.18.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
437 |
+
"vision_tower.transformer.resblocks.18.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
438 |
+
"vision_tower.transformer.resblocks.18.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
439 |
+
"vision_tower.transformer.resblocks.19.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
440 |
+
"vision_tower.transformer.resblocks.19.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
441 |
+
"vision_tower.transformer.resblocks.19.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
442 |
+
"vision_tower.transformer.resblocks.19.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
443 |
+
"vision_tower.transformer.resblocks.19.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
444 |
+
"vision_tower.transformer.resblocks.19.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
445 |
+
"vision_tower.transformer.resblocks.19.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
446 |
+
"vision_tower.transformer.resblocks.19.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
447 |
+
"vision_tower.transformer.resblocks.19.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
448 |
+
"vision_tower.transformer.resblocks.19.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
449 |
+
"vision_tower.transformer.resblocks.19.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
450 |
+
"vision_tower.transformer.resblocks.19.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
451 |
+
"vision_tower.transformer.resblocks.2.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
452 |
+
"vision_tower.transformer.resblocks.2.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
453 |
+
"vision_tower.transformer.resblocks.2.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
454 |
+
"vision_tower.transformer.resblocks.2.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
455 |
+
"vision_tower.transformer.resblocks.2.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
456 |
+
"vision_tower.transformer.resblocks.2.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
457 |
+
"vision_tower.transformer.resblocks.2.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
458 |
+
"vision_tower.transformer.resblocks.2.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
459 |
+
"vision_tower.transformer.resblocks.2.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
460 |
+
"vision_tower.transformer.resblocks.2.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
461 |
+
"vision_tower.transformer.resblocks.2.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
462 |
+
"vision_tower.transformer.resblocks.2.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
463 |
+
"vision_tower.transformer.resblocks.20.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
464 |
+
"vision_tower.transformer.resblocks.20.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
465 |
+
"vision_tower.transformer.resblocks.20.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
466 |
+
"vision_tower.transformer.resblocks.20.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
467 |
+
"vision_tower.transformer.resblocks.20.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
468 |
+
"vision_tower.transformer.resblocks.20.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
469 |
+
"vision_tower.transformer.resblocks.20.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
470 |
+
"vision_tower.transformer.resblocks.20.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
471 |
+
"vision_tower.transformer.resblocks.20.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
472 |
+
"vision_tower.transformer.resblocks.20.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
473 |
+
"vision_tower.transformer.resblocks.20.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
474 |
+
"vision_tower.transformer.resblocks.20.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
475 |
+
"vision_tower.transformer.resblocks.21.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
476 |
+
"vision_tower.transformer.resblocks.21.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
477 |
+
"vision_tower.transformer.resblocks.21.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
478 |
+
"vision_tower.transformer.resblocks.21.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
479 |
+
"vision_tower.transformer.resblocks.21.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
480 |
+
"vision_tower.transformer.resblocks.21.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
481 |
+
"vision_tower.transformer.resblocks.21.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
482 |
+
"vision_tower.transformer.resblocks.21.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
483 |
+
"vision_tower.transformer.resblocks.21.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
484 |
+
"vision_tower.transformer.resblocks.21.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
485 |
+
"vision_tower.transformer.resblocks.21.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
486 |
+
"vision_tower.transformer.resblocks.21.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
487 |
+
"vision_tower.transformer.resblocks.22.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
488 |
+
"vision_tower.transformer.resblocks.22.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
489 |
+
"vision_tower.transformer.resblocks.22.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
490 |
+
"vision_tower.transformer.resblocks.22.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
491 |
+
"vision_tower.transformer.resblocks.22.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
492 |
+
"vision_tower.transformer.resblocks.22.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
493 |
+
"vision_tower.transformer.resblocks.22.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
494 |
+
"vision_tower.transformer.resblocks.22.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
495 |
+
"vision_tower.transformer.resblocks.22.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
496 |
+
"vision_tower.transformer.resblocks.22.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
497 |
+
"vision_tower.transformer.resblocks.22.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
498 |
+
"vision_tower.transformer.resblocks.22.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
499 |
+
"vision_tower.transformer.resblocks.23.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
500 |
+
"vision_tower.transformer.resblocks.23.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
501 |
+
"vision_tower.transformer.resblocks.23.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
502 |
+
"vision_tower.transformer.resblocks.23.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
503 |
+
"vision_tower.transformer.resblocks.23.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
504 |
+
"vision_tower.transformer.resblocks.23.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
505 |
+
"vision_tower.transformer.resblocks.23.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
506 |
+
"vision_tower.transformer.resblocks.23.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
507 |
+
"vision_tower.transformer.resblocks.23.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
508 |
+
"vision_tower.transformer.resblocks.23.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
509 |
+
"vision_tower.transformer.resblocks.23.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
510 |
+
"vision_tower.transformer.resblocks.23.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
511 |
+
"vision_tower.transformer.resblocks.3.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
512 |
+
"vision_tower.transformer.resblocks.3.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
513 |
+
"vision_tower.transformer.resblocks.3.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
514 |
+
"vision_tower.transformer.resblocks.3.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
515 |
+
"vision_tower.transformer.resblocks.3.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
516 |
+
"vision_tower.transformer.resblocks.3.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
517 |
+
"vision_tower.transformer.resblocks.3.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
518 |
+
"vision_tower.transformer.resblocks.3.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
519 |
+
"vision_tower.transformer.resblocks.3.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
520 |
+
"vision_tower.transformer.resblocks.3.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
521 |
+
"vision_tower.transformer.resblocks.3.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
522 |
+
"vision_tower.transformer.resblocks.3.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
523 |
+
"vision_tower.transformer.resblocks.4.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
524 |
+
"vision_tower.transformer.resblocks.4.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
525 |
+
"vision_tower.transformer.resblocks.4.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
526 |
+
"vision_tower.transformer.resblocks.4.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
527 |
+
"vision_tower.transformer.resblocks.4.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
528 |
+
"vision_tower.transformer.resblocks.4.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
529 |
+
"vision_tower.transformer.resblocks.4.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
530 |
+
"vision_tower.transformer.resblocks.4.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
531 |
+
"vision_tower.transformer.resblocks.4.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
532 |
+
"vision_tower.transformer.resblocks.4.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
533 |
+
"vision_tower.transformer.resblocks.4.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
534 |
+
"vision_tower.transformer.resblocks.4.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
535 |
+
"vision_tower.transformer.resblocks.5.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
536 |
+
"vision_tower.transformer.resblocks.5.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
537 |
+
"vision_tower.transformer.resblocks.5.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
538 |
+
"vision_tower.transformer.resblocks.5.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
539 |
+
"vision_tower.transformer.resblocks.5.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
540 |
+
"vision_tower.transformer.resblocks.5.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
541 |
+
"vision_tower.transformer.resblocks.5.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
542 |
+
"vision_tower.transformer.resblocks.5.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
543 |
+
"vision_tower.transformer.resblocks.5.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
544 |
+
"vision_tower.transformer.resblocks.5.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
545 |
+
"vision_tower.transformer.resblocks.5.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
546 |
+
"vision_tower.transformer.resblocks.5.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
547 |
+
"vision_tower.transformer.resblocks.6.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
548 |
+
"vision_tower.transformer.resblocks.6.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
549 |
+
"vision_tower.transformer.resblocks.6.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
550 |
+
"vision_tower.transformer.resblocks.6.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
551 |
+
"vision_tower.transformer.resblocks.6.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
552 |
+
"vision_tower.transformer.resblocks.6.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
553 |
+
"vision_tower.transformer.resblocks.6.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
554 |
+
"vision_tower.transformer.resblocks.6.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
555 |
+
"vision_tower.transformer.resblocks.6.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
556 |
+
"vision_tower.transformer.resblocks.6.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
557 |
+
"vision_tower.transformer.resblocks.6.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
558 |
+
"vision_tower.transformer.resblocks.6.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
559 |
+
"vision_tower.transformer.resblocks.7.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
560 |
+
"vision_tower.transformer.resblocks.7.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
561 |
+
"vision_tower.transformer.resblocks.7.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
562 |
+
"vision_tower.transformer.resblocks.7.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
563 |
+
"vision_tower.transformer.resblocks.7.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
564 |
+
"vision_tower.transformer.resblocks.7.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
565 |
+
"vision_tower.transformer.resblocks.7.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
566 |
+
"vision_tower.transformer.resblocks.7.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
567 |
+
"vision_tower.transformer.resblocks.7.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
568 |
+
"vision_tower.transformer.resblocks.7.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
569 |
+
"vision_tower.transformer.resblocks.7.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
570 |
+
"vision_tower.transformer.resblocks.7.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
571 |
+
"vision_tower.transformer.resblocks.8.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
572 |
+
"vision_tower.transformer.resblocks.8.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
573 |
+
"vision_tower.transformer.resblocks.8.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
574 |
+
"vision_tower.transformer.resblocks.8.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
575 |
+
"vision_tower.transformer.resblocks.8.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
576 |
+
"vision_tower.transformer.resblocks.8.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
577 |
+
"vision_tower.transformer.resblocks.8.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
578 |
+
"vision_tower.transformer.resblocks.8.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
579 |
+
"vision_tower.transformer.resblocks.8.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
580 |
+
"vision_tower.transformer.resblocks.8.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
581 |
+
"vision_tower.transformer.resblocks.8.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
582 |
+
"vision_tower.transformer.resblocks.8.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
583 |
+
"vision_tower.transformer.resblocks.9.attn.in_proj_bias": "pytorch_model-00001-of-00002.bin",
|
584 |
+
"vision_tower.transformer.resblocks.9.attn.in_proj_weight": "pytorch_model-00001-of-00002.bin",
|
585 |
+
"vision_tower.transformer.resblocks.9.attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
|
586 |
+
"vision_tower.transformer.resblocks.9.attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
|
587 |
+
"vision_tower.transformer.resblocks.9.ln_1.bias": "pytorch_model-00001-of-00002.bin",
|
588 |
+
"vision_tower.transformer.resblocks.9.ln_1.weight": "pytorch_model-00001-of-00002.bin",
|
589 |
+
"vision_tower.transformer.resblocks.9.ln_2.bias": "pytorch_model-00001-of-00002.bin",
|
590 |
+
"vision_tower.transformer.resblocks.9.ln_2.weight": "pytorch_model-00001-of-00002.bin",
|
591 |
+
"vision_tower.transformer.resblocks.9.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
|
592 |
+
"vision_tower.transformer.resblocks.9.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
|
593 |
+
"vision_tower.transformer.resblocks.9.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
|
594 |
+
"vision_tower.transformer.resblocks.9.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin"
|
595 |
+
}
|
596 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"bos_token": "<s>",
|
31 |
+
"clean_up_tokenization_spaces": false,
|
32 |
+
"eos_token": "</s>",
|
33 |
+
"legacy": false,
|
34 |
+
"model_max_length": 1000000000000000019884624838656,
|
35 |
+
"pad_token": "<unk>",
|
36 |
+
"padding_side": "right",
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"spaces_between_special_tokens": false,
|
39 |
+
"tokenizer_class": "LlamaTokenizer",
|
40 |
+
"unk_token": "<unk>",
|
41 |
+
"use_default_system_prompt": true
|
42 |
+
}
|