Push Lunar Lander-v2 model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 281.74 +/- 17.96
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faa2e2e6ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faa2e2e6d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faa2e2e6dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faa2e2e6e50>", "_build": "<function ActorCriticPolicy._build at 0x7faa2e2e6ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7faa2e2e6f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7faa2e2ea040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faa2e2ea0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7faa2e2ea160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faa2e2ea1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faa2e2ea280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faa2e2ea310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7faa2e2e7f80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1501440, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680637138033169097, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADJsr3DZVG6QTmWOY78c7br6Ge7HnW4uAAAgD8AAAAAesRBPlSux7xqtr86JhhevMg1Or59zSu9AAAAAAAAgD+azT49SJH/PfKPdD1qM2++rUliPTtJL70AAAAAAAAAAFDCpj5eNOY+Glf9PIFcBb+hw5s+LrwEvgAAAAAAAAAAzenwPVyZej37Odu9IXROvjTYuDzzXVw9AAAAAAAAAADNzIK8HIsevJh4rj02jps9zPB5vXJ7lL0AAIA/AACAP0BJgj245vu5cDlVscychLA+X8+6XrzUsQAAgD8AAIA/qsDZPh4FYD8+HbA+Q8Apv3QE1D7VaOo7AAAAAAAAAABN58O9pFgKu8KvLz7Tthi+vfrVvEWQK78AAIA/AACAPxrw7j2P0247swNcvkWiIr7AlE68wc6HvAAAAAAAAAAAc9CFPfasdLpKXC+5QOHXs2HNGrouokg4AACAPwAAgD+GFhO+18E+u8LrlrrZbo63eoaiPAJsszkAAIA/AACAP9qUob0txSs/U9uMPfIo/L5A+XS9jxZFPgAAAAAAAAAA85qqPY+mVLrk+I2793UtM5dj1zoRx0OzAACAPwAAAACaYnQ99gwhuie/hrk+b1q0Z8VyOaI1mzgAAIA/AAAAAJrhHTxOIeE9s7FUPX9+Mb7qnyQ9W8nRPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0009600000000000719, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUIvBw3Q6cECUhpRSlIwBbJRL+IwBdJRHQJahuW/rSmZ1fZQoaAZoCWgPQwhbJVgcjoJyQJSGlFKUaBVNAQFoFkdAlqIoeHSF5HV9lChoBmgJaA9DCMv1tpmKgW1AlIaUUpRoFUvjaBZHQJailAcDKYB1fZQoaAZoCWgPQwhfmiLAqdNzQJSGlFKUaBVLw2gWR0CWorcNpdrwdX2UKGgGaAloD0MIvAM8aWEZZECUhpRSlGgVTegDaBZHQJalaJvYODt1fZQoaAZoCWgPQwjnVgirMQNmQJSGlFKUaBVN6ANoFkdAlqad4iX6ZnV9lChoBmgJaA9DCIhKI2a2ZHFAlIaUUpRoFUvdaBZHQJam3Ijnmq51fZQoaAZoCWgPQwhe9BWkGb1wQJSGlFKUaBVL+GgWR0CWp/AM2FWXdX2UKGgGaAloD0MIqI5VSo+uckCUhpRSlGgVS+ZoFkdAlqq7B0p3HXV9lChoBmgJaA9DCCAnTBgN4HBAlIaUUpRoFUvFaBZHQJarcmgJ1JV1fZQoaAZoCWgPQwiqtTALLRJ0QJSGlFKUaBVLyGgWR0CWrDtUXHindX2UKGgGaAloD0MI54wo7Y3dbUCUhpRSlGgVS9VoFkdAlqw6wdKdx3V9lChoBmgJaA9DCOyKGeGtBnFAlIaUUpRoFUvZaBZHQJatP+MqBmR1fZQoaAZoCWgPQwgVyOwsOmtwQJSGlFKUaBVNAAFoFkdAlrHq/7BO6HV9lChoBmgJaA9DCGnIeJRKM29AlIaUUpRoFUvpaBZHQJazNM10knl1fZQoaAZoCWgPQwgAjGfQUHlyQJSGlFKUaBVL+WgWR0CWs7W/JvHcdX2UKGgGaAloD0MIgv+tZEftbkCUhpRSlGgVS/BoFkdAlrfvfsNUfnV9lChoBmgJaA9DCBJOC1505nJAlIaUUpRoFUvAaBZHQJa5ciaAnUl1fZQoaAZoCWgPQwgxtDo5QzxgQJSGlFKUaBVN6ANoFkdAlrrQpKBd2XV9lChoBmgJaA9DCADmWrSAX2VAlIaUUpRoFU3oA2gWR0CWu1qagElmdX2UKGgGaAloD0MIuyu7YPA/ckCUhpRSlGgVTQEBaBZHQJa8A75mAb11fZQoaAZoCWgPQwhhMlUwKsNvQJSGlFKUaBVL62gWR0CWwFBsANobdX2UKGgGaAloD0MI6j9rfrw4ckCUhpRSlGgVTUABaBZHQJbBBGZuyeJ1fZQoaAZoCWgPQwiT5SSUvlNhQJSGlFKUaBVN6ANoFkdAlsFpH7P6bnV9lChoBmgJaA9DCMiVehaEuXBAlIaUUpRoFU0uAWgWR0CWwlV0cOsldX2UKGgGaAloD0MIPlkxXJ27cECUhpRSlGgVS9poFkdAlsM0LQXyiHV9lChoBmgJaA9DCCnrNxPT+29AlIaUUpRoFUvTaBZHQJbD9o8IRiB1fZQoaAZoCWgPQwjQmEnUy95wQJSGlFKUaBVNXQJoFkdAlsRouCf6GnV9lChoBmgJaA9DCL4tWKpLTXFAlIaUUpRoFUvNaBZHQJbIHADaGpN1fZQoaAZoCWgPQwiFXKlngWpyQJSGlFKUaBVL+GgWR0CWyKElE7W/dX2UKGgGaAloD0MIdVYL7HHWcECUhpRSlGgVTSYBaBZHQJbJHm4iHIp1fZQoaAZoCWgPQwioHf6arL9mQJSGlFKUaBVN6ANoFkdAlswusT37DXV9lChoBmgJaA9DCOTbuwY9z3BAlIaUUpRoFUvDaBZHQJbMRv73wkR1fZQoaAZoCWgPQwimmIOg4yFwQJSGlFKUaBVNBgFoFkdAlsxobsF+u3V9lChoBmgJaA9DCKPp7GRwXnBAlIaUUpRoFU2VAmgWR0CWzHw97ngYdX2UKGgGaAloD0MIAeDYs+d6cUCUhpRSlGgVS71oFkdAlszdf5ULlXV9lChoBmgJaA9DCMLZrWUyK3JAlIaUUpRoFUvkaBZHQJbM7VTaTOh1fZQoaAZoCWgPQwjTwI9qWLdvQJSGlFKUaBVLvGgWR0CWzWQKa5PNdX2UKGgGaAloD0MIml5iLFNDcUCUhpRSlGgVS+hoFkdAls2b5mAbynV9lChoBmgJaA9DCHR7SWM0IXNAlIaUUpRoFU0dAWgWR0CWzbvrGBFvdX2UKGgGaAloD0MIADj27Dl0cUCUhpRSlGgVS7doFkdAltEjxwyZa3V9lChoBmgJaA9DCDHsMCb9IHNAlIaUUpRoFUvtaBZHQJbRLMaCL/F1fZQoaAZoCWgPQwgCKhxBqgBxQJSGlFKUaBVNcAFoFkdAltF6QFLWZ3V9lChoBmgJaA9DCGzLgLPUtHNAlIaUUpRoFUvSaBZHQJbSUiB5HEx1fZQoaAZoCWgPQwj5oj1eiN9yQJSGlFKUaBVLxmgWR0CW0l7+T/yYdX2UKGgGaAloD0MIdCmuKrvqcUCUhpRSlGgVS7toFkdAltUSIDYAbXV9lChoBmgJaA9DCG3mkNSChnBAlIaUUpRoFUvHaBZHQJbVYxvegth1fZQoaAZoCWgPQwiInL6er+BcQJSGlFKUaBVN6ANoFkdAltY4y0rsjXV9lChoBmgJaA9DCHZQieuYBXFAlIaUUpRoFUvsaBZHQJbWtKJ2t+11fZQoaAZoCWgPQwjvU1VoILdxQJSGlFKUaBVL3mgWR0CW1r2nbZezdX2UKGgGaAloD0MIsHWpEbrCcUCUhpRSlGgVS99oFkdAltdD6eoUBXV9lChoBmgJaA9DCOrPfqSIAXBAlIaUUpRoFU0WAWgWR0CW2bCVKPGRdX2UKGgGaAloD0MIeo8zTRi9ckCUhpRSlGgVTQgBaBZHQJbZtp5/smh1fZQoaAZoCWgPQwjQnWD/tfpwQJSGlFKUaBVLzmgWR0CW2u8XvYvndX2UKGgGaAloD0MIowIn24CtcUCUhpRSlGgVS9toFkdAltsGt6ol2XV9lChoBmgJaA9DCPvJGB+mV3BAlIaUUpRoFUvHaBZHQJbbwBT4tYl1fZQoaAZoCWgPQwjQ7SWN0SFyQJSGlFKUaBVL+mgWR0CW2/RODaoNdX2UKGgGaAloD0MIKCzxgDLCbkCUhpRSlGgVTUYBaBZHQJbcdFuvUz91fZQoaAZoCWgPQwhFoPoHkcNwQJSGlFKUaBVL32gWR0CW3z5YHPeIdX2UKGgGaAloD0MIaLCp86idb0CUhpRSlGgVS9xoFkdAlt9vlU6xPnV9lChoBmgJaA9DCIh/2NJjNnBAlIaUUpRoFUvSaBZHQJbgiETQE6l1fZQoaAZoCWgPQwizB1qBodlxQJSGlFKUaBVLz2gWR0CW45yULUkOdX2UKGgGaAloD0MIpDZxcv/JcUCUhpRSlGgVS9ZoFkdAluVjRIBikXV9lChoBmgJaA9DCCIZcmz9UHBAlIaUUpRoFU0LAWgWR0CW5ee+23KCdX2UKGgGaAloD0MIfpBlwYQ0dECUhpRSlGgVTUsBaBZHQJbl8r08NhF1fZQoaAZoCWgPQwg74/viUndyQJSGlFKUaBVL12gWR0CW5rV32VVxdX2UKGgGaAloD0MInxwFiIIycUCUhpRSlGgVS99oFkdAlubIRqXWv3V9lChoBmgJaA9DCMIv9fMmYXBAlIaUUpRoFUvaaBZHQJbpFzdUKiR1fZQoaAZoCWgPQwgXKZSFLxlzQJSGlFKUaBVL12gWR0CW6l6JZW7wdX2UKGgGaAloD0MIAd4CCQp8ckCUhpRSlGgVS+ZoFkdAlusmRigCfnV9lChoBmgJaA9DCGh4swbvbHBAlIaUUpRoFUvTaBZHQJbvy6BiCrd1fZQoaAZoCWgPQwhFuMmoMppSQJSGlFKUaBVLiWgWR0CW8Dle4TbndX2UKGgGaAloD0MI1H0AUhtCb0CUhpRSlGgVS8hoFkdAlvHLIHTqjnV9lChoBmgJaA9DCDXUKCSZgXBAlIaUUpRoFU27AmgWR0CW8gKs+3YudX2UKGgGaAloD0MIBYnt7sG/c0CUhpRSlGgVS9BoFkdAlvLrvw3HaXV9lChoBmgJaA9DCB0B3Cxe6HBAlIaUUpRoFUvcaBZHQJbzdRGc4HZ1fZQoaAZoCWgPQwjrrYGtEpJxQJSGlFKUaBVL6mgWR0CW97OhTOxCdX2UKGgGaAloD0MIAP+UKhFbcECUhpRSlGgVS9JoFkdAlvkUrbxmTXV9lChoBmgJaA9DCCUGgZUD+nBAlIaUUpRoFU1aAmgWR0CW+XVvuPV/dX2UKGgGaAloD0MI86/lletzcUCUhpRSlGgVS8xoFkdAlvnc6BAfMnV9lChoBmgJaA9DCEsBaf8D3V1AlIaUUpRoFU3oA2gWR0CW+n87p3X7dX2UKGgGaAloD0MI6DHKM+/FcUCUhpRSlGgVS7doFkdAlvvlbA1vVHV9lChoBmgJaA9DCIl6waf5z3FAlIaUUpRoFU1AAWgWR0CW/4owVTJhdX2UKGgGaAloD0MIzAcEOpOXcUCUhpRSlGgVS7xoFkdAlwBNnPE873V9lChoBmgJaA9DCDklICYh+3BAlIaUUpRoFUu0aBZHQJcBAYm9g4R1fZQoaAZoCWgPQwhZT62+um9xQJSGlFKUaBVL0mgWR0CXAXFId2gWdX2UKGgGaAloD0MI/U/+7t3bcUCUhpRSlGgVTbwCaBZHQJcBoyWRigF1fZQoaAZoCWgPQwjEzhQ6L3luQJSGlFKUaBVL32gWR0CXAqicG1QZdX2UKGgGaAloD0MIJeoFnyZOckCUhpRSlGgVS71oFkdAlwRsIzFdcHV9lChoBmgJaA9DCJ9XPPVIGnJAlIaUUpRoFUvYaBZHQJcG2VgQYk51fZQoaAZoCWgPQwjcZ5WZUpNyQJSGlFKUaBVNAAFoFkdAlwc8f/3nIXV9lChoBmgJaA9DCJIE4Qpoj3JAlIaUUpRoFU0NAWgWR0CXCfKFqSHNdX2UKGgGaAloD0MIvtu8cZKhcECUhpRSlGgVS+9oFkdAlwsuearmyXV9lChoBmgJaA9DCBaInpTJAWRAlIaUUpRoFU3oA2gWR0CXCy7/n4fwdX2UKGgGaAloD0MIev60UR2Tb0CUhpRSlGgVS8NoFkdAlwtJ4KQaJnV9lChoBmgJaA9DCAeaz7mb6XFAlIaUUpRoFU04AWgWR0CXC0cry1/ldX2UKGgGaAloD0MIr9FyoAdsbkCUhpRSlGgVTQsBaBZHQJcLdM8HObB1fZQoaAZoCWgPQwgAcOzZ84hxQJSGlFKUaBVL6mgWR0CXD0q33HrAdX2UKGgGaAloD0MIYp6VtGLqb0CUhpRSlGgVTTQBaBZHQJcPf39JjDt1fZQoaAZoCWgPQwjylNV0PVdyQJSGlFKUaBVNKAFoFkdAlw+OhXbM5nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3680, "n_steps": 102, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d584e5d65cab9e397f087ded30262e6ed62bea4c8ad151711ca221eaeaf7ab2
|
3 |
+
size 147345
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7faa2e2e6ca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faa2e2e6d30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faa2e2e6dc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faa2e2e6e50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7faa2e2e6ee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7faa2e2e6f70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7faa2e2ea040>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faa2e2ea0d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7faa2e2ea160>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faa2e2ea1f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faa2e2ea280>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7faa2e2ea310>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7faa2e2e7f80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1501440,
|
47 |
+
"_total_timesteps": 1500000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1680637138033169097,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADJsr3DZVG6QTmWOY78c7br6Ge7HnW4uAAAgD8AAAAAesRBPlSux7xqtr86JhhevMg1Or59zSu9AAAAAAAAgD+azT49SJH/PfKPdD1qM2++rUliPTtJL70AAAAAAAAAAFDCpj5eNOY+Glf9PIFcBb+hw5s+LrwEvgAAAAAAAAAAzenwPVyZej37Odu9IXROvjTYuDzzXVw9AAAAAAAAAADNzIK8HIsevJh4rj02jps9zPB5vXJ7lL0AAIA/AACAP0BJgj245vu5cDlVscychLA+X8+6XrzUsQAAgD8AAIA/qsDZPh4FYD8+HbA+Q8Apv3QE1D7VaOo7AAAAAAAAAABN58O9pFgKu8KvLz7Tthi+vfrVvEWQK78AAIA/AACAPxrw7j2P0247swNcvkWiIr7AlE68wc6HvAAAAAAAAAAAc9CFPfasdLpKXC+5QOHXs2HNGrouokg4AACAPwAAgD+GFhO+18E+u8LrlrrZbo63eoaiPAJsszkAAIA/AACAP9qUob0txSs/U9uMPfIo/L5A+XS9jxZFPgAAAAAAAAAA85qqPY+mVLrk+I2793UtM5dj1zoRx0OzAACAPwAAAACaYnQ99gwhuie/hrk+b1q0Z8VyOaI1mzgAAIA/AAAAAJrhHTxOIeE9s7FUPX9+Mb7qnyQ9W8nRPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.0009600000000000719,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVQBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUIvBw3Q6cECUhpRSlIwBbJRL+IwBdJRHQJahuW/rSmZ1fZQoaAZoCWgPQwhbJVgcjoJyQJSGlFKUaBVNAQFoFkdAlqIoeHSF5HV9lChoBmgJaA9DCMv1tpmKgW1AlIaUUpRoFUvjaBZHQJailAcDKYB1fZQoaAZoCWgPQwhfmiLAqdNzQJSGlFKUaBVLw2gWR0CWorcNpdrwdX2UKGgGaAloD0MIvAM8aWEZZECUhpRSlGgVTegDaBZHQJalaJvYODt1fZQoaAZoCWgPQwjnVgirMQNmQJSGlFKUaBVN6ANoFkdAlqad4iX6ZnV9lChoBmgJaA9DCIhKI2a2ZHFAlIaUUpRoFUvdaBZHQJam3Ijnmq51fZQoaAZoCWgPQwhe9BWkGb1wQJSGlFKUaBVL+GgWR0CWp/AM2FWXdX2UKGgGaAloD0MIqI5VSo+uckCUhpRSlGgVS+ZoFkdAlqq7B0p3HXV9lChoBmgJaA9DCCAnTBgN4HBAlIaUUpRoFUvFaBZHQJarcmgJ1JV1fZQoaAZoCWgPQwiqtTALLRJ0QJSGlFKUaBVLyGgWR0CWrDtUXHindX2UKGgGaAloD0MI54wo7Y3dbUCUhpRSlGgVS9VoFkdAlqw6wdKdx3V9lChoBmgJaA9DCOyKGeGtBnFAlIaUUpRoFUvZaBZHQJatP+MqBmR1fZQoaAZoCWgPQwgVyOwsOmtwQJSGlFKUaBVNAAFoFkdAlrHq/7BO6HV9lChoBmgJaA9DCGnIeJRKM29AlIaUUpRoFUvpaBZHQJazNM10knl1fZQoaAZoCWgPQwgAjGfQUHlyQJSGlFKUaBVL+WgWR0CWs7W/JvHcdX2UKGgGaAloD0MIgv+tZEftbkCUhpRSlGgVS/BoFkdAlrfvfsNUfnV9lChoBmgJaA9DCBJOC1505nJAlIaUUpRoFUvAaBZHQJa5ciaAnUl1fZQoaAZoCWgPQwgxtDo5QzxgQJSGlFKUaBVN6ANoFkdAlrrQpKBd2XV9lChoBmgJaA9DCADmWrSAX2VAlIaUUpRoFU3oA2gWR0CWu1qagElmdX2UKGgGaAloD0MIuyu7YPA/ckCUhpRSlGgVTQEBaBZHQJa8A75mAb11fZQoaAZoCWgPQwhhMlUwKsNvQJSGlFKUaBVL62gWR0CWwFBsANobdX2UKGgGaAloD0MI6j9rfrw4ckCUhpRSlGgVTUABaBZHQJbBBGZuyeJ1fZQoaAZoCWgPQwiT5SSUvlNhQJSGlFKUaBVN6ANoFkdAlsFpH7P6bnV9lChoBmgJaA9DCMiVehaEuXBAlIaUUpRoFU0uAWgWR0CWwlV0cOsldX2UKGgGaAloD0MIPlkxXJ27cECUhpRSlGgVS9poFkdAlsM0LQXyiHV9lChoBmgJaA9DCCnrNxPT+29AlIaUUpRoFUvTaBZHQJbD9o8IRiB1fZQoaAZoCWgPQwjQmEnUy95wQJSGlFKUaBVNXQJoFkdAlsRouCf6GnV9lChoBmgJaA9DCL4tWKpLTXFAlIaUUpRoFUvNaBZHQJbIHADaGpN1fZQoaAZoCWgPQwiFXKlngWpyQJSGlFKUaBVL+GgWR0CWyKElE7W/dX2UKGgGaAloD0MIdVYL7HHWcECUhpRSlGgVTSYBaBZHQJbJHm4iHIp1fZQoaAZoCWgPQwioHf6arL9mQJSGlFKUaBVN6ANoFkdAlswusT37DXV9lChoBmgJaA9DCOTbuwY9z3BAlIaUUpRoFUvDaBZHQJbMRv73wkR1fZQoaAZoCWgPQwimmIOg4yFwQJSGlFKUaBVNBgFoFkdAlsxobsF+u3V9lChoBmgJaA9DCKPp7GRwXnBAlIaUUpRoFU2VAmgWR0CWzHw97ngYdX2UKGgGaAloD0MIAeDYs+d6cUCUhpRSlGgVS71oFkdAlszdf5ULlXV9lChoBmgJaA9DCMLZrWUyK3JAlIaUUpRoFUvkaBZHQJbM7VTaTOh1fZQoaAZoCWgPQwjTwI9qWLdvQJSGlFKUaBVLvGgWR0CWzWQKa5PNdX2UKGgGaAloD0MIml5iLFNDcUCUhpRSlGgVS+hoFkdAls2b5mAbynV9lChoBmgJaA9DCHR7SWM0IXNAlIaUUpRoFU0dAWgWR0CWzbvrGBFvdX2UKGgGaAloD0MIADj27Dl0cUCUhpRSlGgVS7doFkdAltEjxwyZa3V9lChoBmgJaA9DCDHsMCb9IHNAlIaUUpRoFUvtaBZHQJbRLMaCL/F1fZQoaAZoCWgPQwgCKhxBqgBxQJSGlFKUaBVNcAFoFkdAltF6QFLWZ3V9lChoBmgJaA9DCGzLgLPUtHNAlIaUUpRoFUvSaBZHQJbSUiB5HEx1fZQoaAZoCWgPQwj5oj1eiN9yQJSGlFKUaBVLxmgWR0CW0l7+T/yYdX2UKGgGaAloD0MIdCmuKrvqcUCUhpRSlGgVS7toFkdAltUSIDYAbXV9lChoBmgJaA9DCG3mkNSChnBAlIaUUpRoFUvHaBZHQJbVYxvegth1fZQoaAZoCWgPQwiInL6er+BcQJSGlFKUaBVN6ANoFkdAltY4y0rsjXV9lChoBmgJaA9DCHZQieuYBXFAlIaUUpRoFUvsaBZHQJbWtKJ2t+11fZQoaAZoCWgPQwjvU1VoILdxQJSGlFKUaBVL3mgWR0CW1r2nbZezdX2UKGgGaAloD0MIsHWpEbrCcUCUhpRSlGgVS99oFkdAltdD6eoUBXV9lChoBmgJaA9DCOrPfqSIAXBAlIaUUpRoFU0WAWgWR0CW2bCVKPGRdX2UKGgGaAloD0MIeo8zTRi9ckCUhpRSlGgVTQgBaBZHQJbZtp5/smh1fZQoaAZoCWgPQwjQnWD/tfpwQJSGlFKUaBVLzmgWR0CW2u8XvYvndX2UKGgGaAloD0MIowIn24CtcUCUhpRSlGgVS9toFkdAltsGt6ol2XV9lChoBmgJaA9DCPvJGB+mV3BAlIaUUpRoFUvHaBZHQJbbwBT4tYl1fZQoaAZoCWgPQwjQ7SWN0SFyQJSGlFKUaBVL+mgWR0CW2/RODaoNdX2UKGgGaAloD0MIKCzxgDLCbkCUhpRSlGgVTUYBaBZHQJbcdFuvUz91fZQoaAZoCWgPQwhFoPoHkcNwQJSGlFKUaBVL32gWR0CW3z5YHPeIdX2UKGgGaAloD0MIaLCp86idb0CUhpRSlGgVS9xoFkdAlt9vlU6xPnV9lChoBmgJaA9DCIh/2NJjNnBAlIaUUpRoFUvSaBZHQJbgiETQE6l1fZQoaAZoCWgPQwizB1qBodlxQJSGlFKUaBVLz2gWR0CW45yULUkOdX2UKGgGaAloD0MIpDZxcv/JcUCUhpRSlGgVS9ZoFkdAluVjRIBikXV9lChoBmgJaA9DCCIZcmz9UHBAlIaUUpRoFU0LAWgWR0CW5ee+23KCdX2UKGgGaAloD0MIfpBlwYQ0dECUhpRSlGgVTUsBaBZHQJbl8r08NhF1fZQoaAZoCWgPQwg74/viUndyQJSGlFKUaBVL12gWR0CW5rV32VVxdX2UKGgGaAloD0MInxwFiIIycUCUhpRSlGgVS99oFkdAlubIRqXWv3V9lChoBmgJaA9DCMIv9fMmYXBAlIaUUpRoFUvaaBZHQJbpFzdUKiR1fZQoaAZoCWgPQwgXKZSFLxlzQJSGlFKUaBVL12gWR0CW6l6JZW7wdX2UKGgGaAloD0MIAd4CCQp8ckCUhpRSlGgVS+ZoFkdAlusmRigCfnV9lChoBmgJaA9DCGh4swbvbHBAlIaUUpRoFUvTaBZHQJbvy6BiCrd1fZQoaAZoCWgPQwhFuMmoMppSQJSGlFKUaBVLiWgWR0CW8Dle4TbndX2UKGgGaAloD0MI1H0AUhtCb0CUhpRSlGgVS8hoFkdAlvHLIHTqjnV9lChoBmgJaA9DCDXUKCSZgXBAlIaUUpRoFU27AmgWR0CW8gKs+3YudX2UKGgGaAloD0MIBYnt7sG/c0CUhpRSlGgVS9BoFkdAlvLrvw3HaXV9lChoBmgJaA9DCB0B3Cxe6HBAlIaUUpRoFUvcaBZHQJbzdRGc4HZ1fZQoaAZoCWgPQwjrrYGtEpJxQJSGlFKUaBVL6mgWR0CW97OhTOxCdX2UKGgGaAloD0MIAP+UKhFbcECUhpRSlGgVS9JoFkdAlvkUrbxmTXV9lChoBmgJaA9DCCUGgZUD+nBAlIaUUpRoFU1aAmgWR0CW+XVvuPV/dX2UKGgGaAloD0MI86/lletzcUCUhpRSlGgVS8xoFkdAlvnc6BAfMnV9lChoBmgJaA9DCEsBaf8D3V1AlIaUUpRoFU3oA2gWR0CW+n87p3X7dX2UKGgGaAloD0MI6DHKM+/FcUCUhpRSlGgVS7doFkdAlvvlbA1vVHV9lChoBmgJaA9DCIl6waf5z3FAlIaUUpRoFU1AAWgWR0CW/4owVTJhdX2UKGgGaAloD0MIzAcEOpOXcUCUhpRSlGgVS7xoFkdAlwBNnPE873V9lChoBmgJaA9DCDklICYh+3BAlIaUUpRoFUu0aBZHQJcBAYm9g4R1fZQoaAZoCWgPQwhZT62+um9xQJSGlFKUaBVL0mgWR0CXAXFId2gWdX2UKGgGaAloD0MI/U/+7t3bcUCUhpRSlGgVTbwCaBZHQJcBoyWRigF1fZQoaAZoCWgPQwjEzhQ6L3luQJSGlFKUaBVL32gWR0CXAqicG1QZdX2UKGgGaAloD0MIJeoFnyZOckCUhpRSlGgVS71oFkdAlwRsIzFdcHV9lChoBmgJaA9DCJ9XPPVIGnJAlIaUUpRoFUvYaBZHQJcG2VgQYk51fZQoaAZoCWgPQwjcZ5WZUpNyQJSGlFKUaBVNAAFoFkdAlwc8f/3nIXV9lChoBmgJaA9DCJIE4Qpoj3JAlIaUUpRoFU0NAWgWR0CXCfKFqSHNdX2UKGgGaAloD0MIvtu8cZKhcECUhpRSlGgVS+9oFkdAlwsuearmyXV9lChoBmgJaA9DCBaInpTJAWRAlIaUUpRoFU3oA2gWR0CXCy7/n4fwdX2UKGgGaAloD0MIev60UR2Tb0CUhpRSlGgVS8NoFkdAlwtJ4KQaJnV9lChoBmgJaA9DCAeaz7mb6XFAlIaUUpRoFU04AWgWR0CXC0cry1/ldX2UKGgGaAloD0MIr9FyoAdsbkCUhpRSlGgVTQsBaBZHQJcLdM8HObB1fZQoaAZoCWgPQwgAcOzZ84hxQJSGlFKUaBVL6mgWR0CXD0q33HrAdX2UKGgGaAloD0MIYp6VtGLqb0CUhpRSlGgVTTQBaBZHQJcPf39JjDt1fZQoaAZoCWgPQwjylNV0PVdyQJSGlFKUaBVNKAFoFkdAlw+OhXbM5nVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 3680,
|
80 |
+
"n_steps": 102,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f74f473510aad731c63ca95839b301459a68c2907cb77fe7d1bcd24e054ab538
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e84951a3feeaa21e075d5fc0fdc070338682f96b875820a4674bd556f36cd851
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (195 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 281.7369339633834, "std_reward": 17.96211471858424, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-04T20:08:32.344066"}
|