SURESHBEEKHANI
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,166 +1,67 @@
|
|
1 |
-
# **Fine-Tuning Meta-Llama-3.2-3B with Unsloth for CPU and GPU Inference - GGML**
|
2 |
-
|
3 |
-
## **Overview**
|
4 |
-
On **September 25, 2024**, Meta released the **Llama 3.2** series, featuring highly optimized multilingual language models in 1B and 3B parameter configurations. These models excel in multilingual dialogue tasks, summarization, and agentic retrieval, supporting extensive text processing with a **128K token context length**.
|
5 |
-
|
6 |
-
This repository demonstrates fine-tuning the **Meta-Llama-3.2-3B** model using **Unsloth** for efficient training and inference. It also includes steps to convert the model into **GGML format**, enabling memory-efficient deployment on CPUs and GPUs.
|
7 |
-
|
8 |
---
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
---
|
|
|
19 |
|
20 |
-
##
|
21 |
-
- **Low-Rank Adaptation (LoRA):** Enables efficient parameter fine-tuning, reducing training costs.
|
22 |
-
- **Memory Optimization:** Supports **4-bit quantization** for memory-constrained environments.
|
23 |
-
- **Fast Processing:** Includes gradient checkpointing and optimized data handling for faster inference.
|
24 |
-
- **Extended Context Length:** Handles input sequences up to **128K tokens** for large document processing.
|
25 |
-
- **Versatile Applications:** Ideal for dialogue systems, summarization, and knowledge retrieval tasks.
|
26 |
|
27 |
-
|
28 |
|
29 |
-
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
Install the necessary packages, including the latest version of **Unsloth** for enhanced fine-tuning efficiency.
|
33 |
-
```bash
|
34 |
-
%%capture
|
35 |
-
!pip install unsloth
|
36 |
-
# Install the latest nightly version of Unsloth
|
37 |
-
!pip install --force-reinstall --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git
|
38 |
-
```
|
39 |
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
###
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
# Configuration settings
|
49 |
-
max_seq_length = 2048 # Maximum sequence length
|
50 |
-
dtype = None # Automatically detects dtype; Float16 for T4, Bfloat16 for Ampere+
|
51 |
-
load_in_4bit = True # Use 4-bit quantization for memory efficiency
|
52 |
-
|
53 |
-
# Load the model and tokenizer
|
54 |
-
model, tokenizer = FastLanguageModel.from_pretrained(
|
55 |
-
model_name="unsloth/Llama-3.2-3B-Instruct",
|
56 |
-
max_seq_length=max_seq_length,
|
57 |
-
dtype=dtype,
|
58 |
-
load_in_4bit=load_in_4bit,
|
59 |
-
)
|
60 |
-
```
|
61 |
|
62 |
-
|
|
|
63 |
|
64 |
-
##
|
65 |
-
|
66 |
-
### **LoRA Fine-Tuning with Unsloth**
|
67 |
-
Use LoRA adapters to fine-tune only a small subset of model parameters:
|
68 |
-
```python
|
69 |
-
model = FastLanguageModel.get_peft_model(
|
70 |
-
model,
|
71 |
-
r=16, # Rank for LoRA; options: 8, 16, 32, etc.
|
72 |
-
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
73 |
-
lora_alpha=16,
|
74 |
-
lora_dropout=0,
|
75 |
-
bias="none",
|
76 |
-
use_gradient_checkpointing="unsloth", # Enable optimized checkpointing
|
77 |
-
random_state=3407,
|
78 |
-
)
|
79 |
-
```
|
80 |
|
81 |
-
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
tokenizer = get_chat_template(tokenizer, chat_template="llama-3.1")
|
91 |
-
|
92 |
-
def formatting_prompts_func(examples):
|
93 |
-
convos = examples["conversations"]
|
94 |
-
texts = [
|
95 |
-
tokenizer.apply_chat_template(convo, tokenize=False, add_generation_prompt=False)
|
96 |
-
for convo in convos
|
97 |
-
]
|
98 |
-
return {"text": texts}
|
99 |
-
|
100 |
-
# Load and prepare the dataset
|
101 |
-
dataset = load_dataset("mlabonne/FineTome-100k", split="train")
|
102 |
-
dataset = dataset.select(range(500)) # Use a subset for quick testing
|
103 |
-
from unsloth.chat_templates import standardize_sharegpt
|
104 |
-
dataset = standardize_sharegpt(dataset)
|
105 |
-
dataset = dataset.map(formatting_prompts_func, batched=True)
|
106 |
-
```
|
107 |
|
108 |
-
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
### **SFT Training with TRL**
|
113 |
-
Fine-tune the model using Hugging Face's TRL library:
|
114 |
-
```python
|
115 |
-
from trl import SFTTrainer
|
116 |
-
from transformers import TrainingArguments, DataCollatorForSeq2Seq
|
117 |
-
from unsloth import is_bfloat16_supported
|
118 |
-
|
119 |
-
trainer = SFTTrainer(
|
120 |
-
model=model,
|
121 |
-
tokenizer=tokenizer,
|
122 |
-
train_dataset=dataset,
|
123 |
-
dataset_text_field="text",
|
124 |
-
max_seq_length=max_seq_length,
|
125 |
-
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer),
|
126 |
-
dataset_num_proc=2,
|
127 |
-
packing=False,
|
128 |
-
args=TrainingArguments(
|
129 |
-
per_device_train_batch_size=2,
|
130 |
-
gradient_accumulation_steps=4,
|
131 |
-
warmup_steps=5,
|
132 |
-
max_steps=60,
|
133 |
-
learning_rate=2e-4,
|
134 |
-
fp16=not is_bfloat16_supported(),
|
135 |
-
bf16=is_bfloat16_supported(),
|
136 |
-
logging_steps=1,
|
137 |
-
optim="adamw_8bit",
|
138 |
-
weight_decay=0.01,
|
139 |
-
lr_scheduler_type="linear",
|
140 |
-
seed=3407,
|
141 |
-
output_dir="outputs",
|
142 |
-
report_to="none",
|
143 |
-
),
|
144 |
-
)
|
145 |
-
|
146 |
-
# Train on assistant responses only
|
147 |
-
from unsloth.chat_templates import train_on_responses_only
|
148 |
-
trainer = train_on_responses_only(
|
149 |
-
trainer,
|
150 |
-
instruction_part="<|start_header_id|>user<|end_header_id|>\n\n",
|
151 |
-
response_part="<|start_header_id|>assistant<|end_header_id|>\n\n",
|
152 |
-
)
|
153 |
-
```
|
154 |
|
155 |
-
|
|
|
|
|
|
|
156 |
|
157 |
-
##
|
158 |
-
Convert the fine-tuned model into GGML format for memory-efficient inference:
|
159 |
-
```bash
|
160 |
-
python -m unsloth.export_ggml --model outputs --output llama3.2-3b.ggml
|
161 |
-
```
|
162 |
|
163 |
-
|
|
|
|
|
164 |
|
165 |
-
|
166 |
-
This project is distributed under the Apache License 2.0. See [LICENSE](LICENSE) for more details.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- mlabonne/FineTome-100k
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- unsloth/Llama-3.2-3B-Instruct
|
9 |
+
pipeline_tag: question-answering
|
|
|
10 |
---
|
11 |
+
# Llama-3.2-3B-Instruct Fine-Tuning on Custom Dataset
|
12 |
|
13 |
+
## Overview
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
This repository demonstrates the process of fine-tuning the **Llama-3.2-3B-Instruct** model using the **Unsloth** library. The model is trained on a custom dataset, **FineTome-100k**, for **60 steps**. Key optimizations include:
|
16 |
|
17 |
+
- **4-bit quantization** to reduce memory usage
|
18 |
+
- **LoRA (Low-Rank Adaptation)** for efficient fine-tuning
|
19 |
+
- Techniques for improving inference speed and generating text with the model
|
20 |
|
21 |
+
## Model Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
- **Model Name**: Llama-3.2-3B-Instruct
|
24 |
+
- **Pretrained Weights**: Unsloth鈥檚 pretrained version for Llama-3.2-3B
|
25 |
+
- **Quantization**: 4-bit quantization (set via `load_in_4bit=True`) for reduced memory usage
|
26 |
|
27 |
+
### LoRA Configuration:
|
28 |
+
- **Rank**: 16
|
29 |
+
- **Target Modules**:
|
30 |
+
- q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
|
31 |
+
- **LoRA Alpha**: 16
|
32 |
+
- **LoRA Dropout**: 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
### Gradient Checkpointing:
|
35 |
+
- **Use Gradient Checkpointing**: "unsloth" for improved long-context training
|
36 |
|
37 |
+
## Training
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
- **Dataset**: FineTome-100k (first 500 records selected)
|
40 |
+
- **Loss Function**: Standard loss for sequence-to-sequence tasks
|
41 |
+
- **Training Steps**: 60 steps with batch size of 2 (gradient accumulation steps set to 4)
|
42 |
+
- **Optimizer**: AdamW 8-bit
|
43 |
|
44 |
+
### Training Parameters:
|
45 |
+
- **Max Sequence Length**: 2048 tokens
|
46 |
+
- **Learning Rate**: 2e-4
|
47 |
+
- **Gradient Accumulation Steps**: 4
|
48 |
+
- **Total Steps**: 60
|
49 |
+
- **Epochs**: 1 (as `max_steps` was set to 60)
|
50 |
+
- **Training Precision**: Use FP16 or BF16 for training depending on GPU support
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
## Performance
|
53 |
|
54 |
+
- **GPU Used**: Tesla T4 (14.7 GB max memory)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
### Peak Memory Usage:
|
57 |
+
- **Total Reserved Memory**: 3.855 GB
|
58 |
+
- **Memory Used for LoRA**: 1.312 GB
|
59 |
+
- **Memory Utilization**: 26.1% (peak) of available memory
|
60 |
|
61 |
+
## Conclusion
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
This notebook showcases an efficient approach to fine-tuning large language models with memory optimizations and improved training efficiency using **LoRA** and **4-bit quantization**. The **Unsloth** library allows for fast training and inference, making this setup ideal for large-scale tasks even with limited GPU resources.
|
64 |
+
|
65 |
+
## Notebook
|
66 |
|
67 |
+
Access the implementation notebook for this model [here](https://github.com/SURESHBEEKHANI/Advanced-LLM-Fine-Tuning/blob/main/Llama_3_2_3B_SFT_GGUF.ipynb). This notebook provides detailed steps for fine-tuning and deploying the model.
|
|