SRobbins commited on
Commit
76cfa39
·
1 Parent(s): 996bed4

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -2.56 +/- 0.99
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -1.18 +/- 0.46
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1c23013fef09b0ce23b1e474c60984c6c00cdf01cee26a4ebacbbaf38f447929
3
- size 108119
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba6a468e89eedd28ff549f58194632ac0cfccf2b2ab77e8558aca215eeb37841
3
+ size 108023
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f44df2dd280>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc_data object at 0x7f44df2d6ba0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -41,12 +41,12 @@
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
- "num_timesteps": 1000000,
45
- "_total_timesteps": 1000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1675885541010691842,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
@@ -55,10 +55,10 @@
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArPTBPkl5ozs7CxU/rPTBPkl5ozs7CxU/rPTBPkl5ozs7CxU/rPTBPkl5ozs7CxU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArvOjO3LgXD/s0I6+fWWRPyA5Cb+NBie/yAWaPkEoLT/z9sm/whxlP5i/EL/0b62/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACs9ME+SXmjOzsLFT+Fn4G7BGQWuk9zMjys9ME+SXmjOzsLFT+Fn4G7BGQWuk9zMjys9ME+SXmjOzsLFT+Fn4G7BGQWuk9zMjys9ME+SXmjOzsLFT+Fn4G7BGQWuk9zMjyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[0.37881982 0.00498882 0.5822026 ]\n [0.37881982 0.00498882 0.5822026 ]\n [0.37881982 0.00498882 0.5822026 ]\n [0.37881982 0.00498882 0.5822026 ]]",
60
- "desired_goal": "[[ 0.00500341 0.86279976 -0.2789377 ]\n [ 1.1359097 -0.5360279 -0.6524437 ]\n [ 0.30082536 0.6763955 -1.5778488 ]\n [ 0.89497006 -0.5654235 -1.354979 ]]",
61
- "observation": "[[ 3.78819823e-01 4.98882355e-03 5.82202613e-01 -3.95578379e-03\n -5.73694939e-04 1.08917495e-02]\n [ 3.78819823e-01 4.98882355e-03 5.82202613e-01 -3.95578379e-03\n -5.73694939e-04 1.08917495e-02]\n [ 3.78819823e-01 4.98882355e-03 5.82202613e-01 -3.95578379e-03\n -5.73694939e-04 1.08917495e-02]\n [ 3.78819823e-01 4.98882355e-03 5.82202613e-01 -3.95578379e-03\n -5.73694939e-04 1.08917495e-02]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,9 +66,9 @@
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8XD1PbjJDz1dOG8+bn4ZvnNHxr2I04k+k+iEvYUwGL5o08A8E4BTPah3wD3i/Dw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[ 0.11984432 0.03510448 0.23361345]\n [-0.14989635 -0.09681597 0.26919198]\n [-0.06489673 -0.14862259 0.02353831]\n [ 0.05163581 0.09397823 0.18455842]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
@@ -77,13 +77,13 @@
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgLdAguJH+7+UhpRSlIwBbJRLMowBdJRHQKbrPpRGc4J1fZQoaAZoCWgPQwhGskeoGVL/v5SGlFKUaBVLMmgWR0Cm6uoNutOmdX2UKGgGaAloD0MII59XPPUoAsCUhpRSlGgVSzJoFkdApuqSC4Bmw3V9lChoBmgJaA9DCCB/aVGfJPC/lIaUUpRoFUsyaBZHQKbqPTqjaf11fZQoaAZoCWgPQwgPXru04bD2v5SGlFKUaBVLMmgWR0Cm7E/gR9PUdX2UKGgGaAloD0MIy9sRTgv+AcCUhpRSlGgVSzJoFkdApuv7UkOZs3V9lChoBmgJaA9DCPbv+sxZX/a/lIaUUpRoFUsyaBZHQKbro4Vh1DB1fZQoaAZoCWgPQwj04O6s3bb5v5SGlFKUaBVLMmgWR0Cm606sp5NXdX2UKGgGaAloD0MIoDaq04Fs8r+UhpRSlGgVSzJoFkdApu1nOhTOxHV9lChoBmgJaA9DCEjeOZShigfAlIaUUpRoFUsyaBZHQKbtEsI3R5V1fZQoaAZoCWgPQwiZKa2/JcD+v5SGlFKUaBVLMmgWR0Cm7Lrf1pTNdX2UKGgGaAloD0MIrhIsDmc+/L+UhpRSlGgVSzJoFkdApuxmEM9bHXV9lChoBmgJaA9DCCEHJcy0HQHAlIaUUpRoFUsyaBZHQKbufTrmhdt1fZQoaAZoCWgPQwhp/MIrSR78v5SGlFKUaBVLMmgWR0Cm7ii+De0pdX2UKGgGaAloD0MIjgOvljuz9r+UhpRSlGgVSzJoFkdApu3Q5R0lq3V9lChoBmgJaA9DCEjhehSuxwLAlIaUUpRoFUsyaBZHQKbtfDQ7cO91fZQoaAZoCWgPQwj/JalMMcf+v5SGlFKUaBVLMmgWR0Cm75ewTufFdX2UKGgGaAloD0MIRNsxdVf28b+UhpRSlGgVSzJoFkdApu9DeEZiu3V9lChoBmgJaA9DCIoD6Pf92wTAlIaUUpRoFUsyaBZHQKbu6912aDx1fZQoaAZoCWgPQwjI6lbPSe/wv5SGlFKUaBVLMmgWR0Cm7pc3l0YCdX2UKGgGaAloD0MIHEEqxY6G97+UhpRSlGgVSzJoFkdApvCuIl+mWXV9lChoBmgJaA9DCNMzvcRYRgHAlIaUUpRoFUsyaBZHQKbwWYjSofl1fZQoaAZoCWgPQwjnOo20VN75v5SGlFKUaBVLMmgWR0Cm8AGwqy4XdX2UKGgGaAloD0MI+fcZFw5ECcCUhpRSlGgVSzJoFkdApu+s6Lfk3nV9lChoBmgJaA9DCEjfpGlQdPi/lIaUUpRoFUsyaBZHQKbxy/etSyd1fZQoaAZoCWgPQwgSiNf1CzYEwJSGlFKUaBVLMmgWR0Cm8XdmYjSodX2UKGgGaAloD0MIbxKDwMoh8L+UhpRSlGgVSzJoFkdApvEfkT6BRXV9lChoBmgJaA9DCDf/rzpypPm/lIaUUpRoFUsyaBZHQKbwyr0aqCJ1fZQoaAZoCWgPQwimC7H6IwwCwJSGlFKUaBVLMmgWR0Cm8ufkFOfvdX2UKGgGaAloD0MIXf3YJD/i/7+UhpRSlGgVSzJoFkdApvKTcuanaXV9lChoBmgJaA9DCNPZyeAouQDAlIaUUpRoFUsyaBZHQKbyO6shgVp1fZQoaAZoCWgPQwjGv8+4cKDnv5SGlFKUaBVLMmgWR0Cm8eb4agmJdX2UKGgGaAloD0MIrMlTVtPVAcCUhpRSlGgVSzJoFkdApvP1GZuyeXV9lChoBmgJaA9DCCb8Uj9vKv6/lIaUUpRoFUsyaBZHQKbzoOAiFCd1fZQoaAZoCWgPQwgNHTuoxLUAwJSGlFKUaBVLMmgWR0Cm80kIHC40dX2UKGgGaAloD0MIaTo7GRwlBMCUhpRSlGgVSzJoFkdApvL0bR4QjHV9lChoBmgJaA9DCPBMaJJY0u2/lIaUUpRoFUsyaBZHQKb1GCmuTzN1fZQoaAZoCWgPQwgfSN45lKH5v5SGlFKUaBVLMmgWR0Cm9MOxKQJYdX2UKGgGaAloD0MIEHnL1Y/N9b+UhpRSlGgVSzJoFkdApvRr9S/CZXV9lChoBmgJaA9DCNAqM6X1dwfAlIaUUpRoFUsyaBZHQKb0FzmwJPZ1fZQoaAZoCWgPQwgLluoCXqb6v5SGlFKUaBVLMmgWR0Cm9jT1K5CodX2UKGgGaAloD0MIowOSsG9HBsCUhpRSlGgVSzJoFkdApvXg1He7+XV9lChoBmgJaA9DCLSu0XKgh/K/lIaUUpRoFUsyaBZHQKb1iQ8OkLx1fZQoaAZoCWgPQwjjNhrAW2D5v5SGlFKUaBVLMmgWR0Cm9TRHPNVzdX2UKGgGaAloD0MIjuiedY1W9L+UhpRSlGgVSzJoFkdApvdPUhFEzHV9lChoBmgJaA9DCKVL/5JUJvW/lIaUUpRoFUsyaBZHQKb2+4p+c6N1fZQoaAZoCWgPQwiGcw0zNB75v5SGlFKUaBVLMmgWR0Cm9qSLZSNwdX2UKGgGaAloD0MIT62+uirQ/b+UhpRSlGgVSzJoFkdApvZQb83uNXV9lChoBmgJaA9DCPTEc7aAUBDAlIaUUpRoFUsyaBZHQKb4Zd+G47R1fZQoaAZoCWgPQwjQ0hVsI976v5SGlFKUaBVLMmgWR0Cm+BFW4mTldX2UKGgGaAloD0MIem02VmIeBMCUhpRSlGgVSzJoFkdApve5dKNADHV9lChoBmgJaA9DCCPA6V28/wXAlIaUUpRoFUsyaBZHQKb3ZJ7sv7F1fZQoaAZoCWgPQwhMio9PyM7dv5SGlFKUaBVLMmgWR0Cm+X6Q/5ckdX2UKGgGaAloD0MIJSNnYU/bCMCUhpRSlGgVSzJoFkdApvkqDbrTpnV9lChoBmgJaA9DCFcm/FI/7wXAlIaUUpRoFUsyaBZHQKb40jX4CZF1fZQoaAZoCWgPQwhYqaCi6hcNwJSGlFKUaBVLMmgWR0Cm+H1uBMBZdX2UKGgGaAloD0MI220XmusUCMCUhpRSlGgVSzJoFkdApvqJ/0/W2HV9lChoBmgJaA9DCFLTLqaZ7ve/lIaUUpRoFUsyaBZHQKb6NY+Sr5t1fZQoaAZoCWgPQwj6gEBn0ub+v5SGlFKUaBVLMmgWR0Cm+d3EZR8/dX2UKGgGaAloD0MI5NcPscGiA8CUhpRSlGgVSzJoFkdApvmI2bXpW3V9lChoBmgJaA9DCEinrnyWp/G/lIaUUpRoFUsyaBZHQKb7mYtQKrt1fZQoaAZoCWgPQwgIq7GEtZEJwJSGlFKUaBVLMmgWR0Cm+0UDEFW5dX2UKGgGaAloD0MIC7Q7pBig+b+UhpRSlGgVSzJoFkdApvrs2tMfzXV9lChoBmgJaA9DCMmP+BVr2AXAlIaUUpRoFUsyaBZHQKb6mA8Swnp1fZQoaAZoCWgPQwhh4o+izlzwv5SGlFKUaBVLMmgWR0Cm/K0ALiMpdX2UKGgGaAloD0MI7C+7Jw/L+b+UhpRSlGgVSzJoFkdApvxYevIOpnV9lChoBmgJaA9DCO23dqIkZP+/lIaUUpRoFUsyaBZHQKb8AKZ2IO91fZQoaAZoCWgPQwikU1c+yxMAwJSGlFKUaBVLMmgWR0Cm+6vrWy1NdX2UKGgGaAloD0MI0eY4twn3DsCUhpRSlGgVSzJoFkdApv3GEM9bHXV9lChoBmgJaA9DCFdfXRWoZQ3AlIaUUpRoFUsyaBZHQKb9cX5WRzR1fZQoaAZoCWgPQwiNfjScMlcJwJSGlFKUaBVLMmgWR0Cm/Rmk30f6dX2UKGgGaAloD0MILLZJRWNNDMCUhpRSlGgVSzJoFkdApvzE3++/QHV9lChoBmgJaA9DCGkZqfdUrgnAlIaUUpRoFUsyaBZHQKb+6+qR2bJ1fZQoaAZoCWgPQwjU8gNXeQL5v5SGlFKUaBVLMmgWR0Cm/pgJTl1bdX2UKGgGaAloD0MI3QphNZYw7L+UhpRSlGgVSzJoFkdApv5BbnoxH3V9lChoBmgJaA9DCM0FLo81I/u/lIaUUpRoFUsyaBZHQKb97LHMlkZ1fZQoaAZoCWgPQwg486s5QPD7v5SGlFKUaBVLMmgWR0CnAJM8YAKfdX2UKGgGaAloD0MIumkzTkNU8r+UhpRSlGgVSzJoFkdApwA/f4yoGnV9lChoBmgJaA9DCKCM8WH2EgbAlIaUUpRoFUsyaBZHQKb/6FsYVIt1fZQoaAZoCWgPQwjXv+szZz36v5SGlFKUaBVLMmgWR0Cm/5QblzU7dX2UKGgGaAloD0MIIxKFlnV/+b+UhpRSlGgVSzJoFkdApwJZPO6d2HV9lChoBmgJaA9DCP5jIToEjvS/lIaUUpRoFUsyaBZHQKcCBVLBbfR1fZQoaAZoCWgPQwhIisiwivcCwJSGlFKUaBVLMmgWR0CnAa5MURFrdX2UKGgGaAloD0MIon2s4Leh77+UhpRSlGgVSzJoFkdApwFafjCHh3V9lChoBmgJaA9DCFD9g0iGnPO/lIaUUpRoFUsyaBZHQKcEJTDO1OV1fZQoaAZoCWgPQwj4p1SJsjcDwJSGlFKUaBVLMmgWR0CnA9Fd1MdtdX2UKGgGaAloD0MIcR5OYDpt9L+UhpRSlGgVSzJoFkdApwN6X8fmtHV9lChoBmgJaA9DCG5sdqT6jvm/lIaUUpRoFUsyaBZHQKcDJpW3jMp1fZQoaAZoCWgPQwh/pIgMq7j6v5SGlFKUaBVLMmgWR0CnBgohpxm1dX2UKGgGaAloD0MISwUVVb+S/L+UhpRSlGgVSzJoFkdApwW2oLofS3V9lChoBmgJaA9DCLfSa7OxMgXAlIaUUpRoFUsyaBZHQKcFX961LJ11fZQoaAZoCWgPQwj8qIb9nlj4v5SGlFKUaBVLMmgWR0CnBQu5BkZrdX2UKGgGaAloD0MIJF6ezhWl97+UhpRSlGgVSzJoFkdApwfuzSkTH3V9lChoBmgJaA9DCJQxPsxeNgPAlIaUUpRoFUsyaBZHQKcHm0l7dBV1fZQoaAZoCWgPQwghWcAEbl3qv5SGlFKUaBVLMmgWR0CnB0RzzVc2dX2UKGgGaAloD0MI5ZmXw+67DcCUhpRSlGgVSzJoFkdApwbwrFwT/XV9lChoBmgJaA9DCKoPJO8cyu2/lIaUUpRoFUsyaBZHQKcJeTAWSEF1fZQoaAZoCWgPQwgTu7a3W3INwJSGlFKUaBVLMmgWR0CnCSSpR4yHdX2UKGgGaAloD0MIDJQUWAAjEMCUhpRSlGgVSzJoFkdApwjMyP+4snV9lChoBmgJaA9DCKvRqwFKQ/O/lIaUUpRoFUsyaBZHQKcIeAUcn3N1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
- "_n_updates": 50000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f952e70f700>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f952e767e10>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
+ "num_timesteps": 1500000,
45
+ "_total_timesteps": 1500000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
+ "start_time": 1676392223871296911,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
 
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATVXUPl8/J7s8BRA/TVXUPl8/J7s8BRA/TVXUPl8/J7s8BRA/TVXUPl8/J7s8BRA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaEJbP4UHaj+ID7W/4dG8P+4crT9iT7S/dqY1v6towz9Mqem+mHIyvnxqEz90Isa+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABNVdQ+Xz8nuzwFED9Ardu6hKUiuoizBTxNVdQ+Xz8nuzwFED9Ardu6hKUiuoizBTxNVdQ+Xz8nuzwFED9Ardu6hKUiuoizBTxNVdQ+Xz8nuzwFED9Ardu6hKUiuoizBTyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.4147133 -0.00255199 0.5625799 ]\n [ 0.4147133 -0.00255199 0.5625799 ]\n [ 0.4147133 -0.00255199 0.5625799 ]\n [ 0.4147133 -0.00255199 0.5625799 ]]",
60
+ "desired_goal": "[[ 0.856482 0.91417724 -1.4145365 ]\n [ 1.475155 1.3524454 -1.4086726 ]\n [-0.70957124 1.5266317 -0.45636976]\n [-0.17426527 0.5758436 -0.3869816 ]]",
61
+ "observation": "[[ 0.4147133 -0.00255199 0.5625799 -0.001676 -0.00062045 0.00816048]\n [ 0.4147133 -0.00255199 0.5625799 -0.001676 -0.00062045 0.00816048]\n [ 0.4147133 -0.00255199 0.5625799 -0.001676 -0.00062045 0.00816048]\n [ 0.4147133 -0.00255199 0.5625799 -0.001676 -0.00062045 0.00816048]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
 
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAp6mmPWSGsj0hoaw9NyoZPi2+Ur2Fpkk+xXD4vUDfsT1Mn5E+UVRkvWE48b2OMVY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.08137827 0.08717039 0.0842917 ]\n [ 0.1495751 -0.0514509 0.19692428]\n [-0.12130884 0.0868516 0.28441846]\n [-0.05574447 -0.11778332 0.20917341]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
 
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB/AWSFDcA8CUhpRSlIwBbJRLMowBdJRHQLHEAGus90R1fZQoaAZoCWgPQwimDBzQ0pUDwJSGlFKUaBVLMmgWR0Cxw9PC66J7dX2UKGgGaAloD0MIbRrba0EPA8CUhpRSlGgVSzJoFkdAscNer3j+73V9lChoBmgJaA9DCLbaw14oAALAlIaUUpRoFUsyaBZHQLHDJrIHTql1fZQoaAZoCWgPQwhO1NLcCkEEwJSGlFKUaBVLMmgWR0CxxIZBcAzYdX2UKGgGaAloD0MIYd7jTBMWAMCUhpRSlGgVSzJoFkdAscRZZSvTw3V9lChoBmgJaA9DCHJQwkzbHwLAlIaUUpRoFUsyaBZHQLHD5FfAsTZ1fZQoaAZoCWgPQwiSkh6GVscBwJSGlFKUaBVLMmgWR0Cxw6xiTdLydX2UKGgGaAloD0MIdTxmoDJ+9r+UhpRSlGgVSzJoFkdAscUNX/5tWXV9lChoBmgJaA9DCMJQhxVuufm/lIaUUpRoFUsyaBZHQLHE4KhL5AR1fZQoaAZoCWgPQwhoImx4eoUAwJSGlFKUaBVLMmgWR0CxxGu/xlQNdX2UKGgGaAloD0MIuvjbniDRAMCUhpRSlGgVSzJoFkdAscQz2f02+HV9lChoBmgJaA9DCMADAwgfyv+/lIaUUpRoFUsyaBZHQLHFkkMkQf91fZQoaAZoCWgPQwgHXFfMCI8BwJSGlFKUaBVLMmgWR0CxxWWycCo1dX2UKGgGaAloD0MIkrHa/L/KA8CUhpRSlGgVSzJoFkdAscTw2sJY1nV9lChoBmgJaA9DCILlCBnIcwPAlIaUUpRoFUsyaBZHQLHEuP9kz411fZQoaAZoCWgPQwgFFOrpIzD+v5SGlFKUaBVLMmgWR0CxxiJ4B3iadX2UKGgGaAloD0MIx735DRONBcCUhpRSlGgVSzJoFkdAscX1uMuOCHV9lChoBmgJaA9DCKjHtgw4CwPAlIaUUpRoFUsyaBZHQLHFgMBZIQR1fZQoaAZoCWgPQwhm+iXirfP9v5SGlFKUaBVLMmgWR0CxxUkILPUsdX2UKGgGaAloD0MIj6omiLrPA8CUhpRSlGgVSzJoFkdAscavRmbsnnV9lChoBmgJaA9DCLWNP1HZsPG/lIaUUpRoFUsyaBZHQLHGgpB5X2d1fZQoaAZoCWgPQwhmEB/Y8R//v5SGlFKUaBVLMmgWR0Cxxg1zZHurdX2UKGgGaAloD0MIKxVUVP2K8r+UhpRSlGgVSzJoFkdAscXVjz7MxHV9lChoBmgJaA9DCHy2Dg72pvi/lIaUUpRoFUsyaBZHQLHHPah6By11fZQoaAZoCWgPQwiNCTGXVK32v5SGlFKUaBVLMmgWR0CxxxD41xbTdX2UKGgGaAloD0MI2bJ8XYY/9b+UhpRSlGgVSzJoFkdAscacBo24u3V9lChoBmgJaA9DCKhTHt0IS/G/lIaUUpRoFUsyaBZHQLHGZCWu5jJ1fZQoaAZoCWgPQwj8G7RXHw/0v5SGlFKUaBVLMmgWR0Cxx8r6P8yfdX2UKGgGaAloD0MIAAAAAABAAcCUhpRSlGgVSzJoFkdAsceeNp/PPnV9lChoBmgJaA9DCJGYoIZv4fG/lIaUUpRoFUsyaBZHQLHHKUg0TDh1fZQoaAZoCWgPQwhuFi8Whsjzv5SGlFKUaBVLMmgWR0CxxvFoDgZTdX2UKGgGaAloD0MIfH2tS43Q8L+UhpRSlGgVSzJoFkdAschUhKUVz3V9lChoBmgJaA9DCHDs2XOZmuq/lIaUUpRoFUsyaBZHQLHIJ+jua4N1fZQoaAZoCWgPQwjvkjgroqb3v5SGlFKUaBVLMmgWR0Cxx7LwrlNldX2UKGgGaAloD0MIzLipgeZz/7+UhpRSlGgVSzJoFkdAscd7EdeY2XV9lChoBmgJaA9DCINMMnIWdum/lIaUUpRoFUsyaBZHQLHJEabF0gd1fZQoaAZoCWgPQwhbtWtCWuP1v5SGlFKUaBVLMmgWR0CxyOU9lmOEdX2UKGgGaAloD0MIJLcm3ZYI+r+UhpRSlGgVSzJoFkdAschwvIwM6XV9lChoBmgJaA9DCM77/zhhAvW/lIaUUpRoFUsyaBZHQLHIOVlPJq91fZQoaAZoCWgPQwjHn6hsWBP7v5SGlFKUaBVLMmgWR0CxyfUSuhbodX2UKGgGaAloD0MIQ1Thz/Bm/L+UhpRSlGgVSzJoFkdAscnI3Q2MsHV9lChoBmgJaA9DCG6GG/D5IQHAlIaUUpRoFUsyaBZHQLHJVA5aNdZ1fZQoaAZoCWgPQwgE54wo7U3/v5SGlFKUaBVLMmgWR0CxyRyQHRkVdX2UKGgGaAloD0MI7N/1mbP+8r+UhpRSlGgVSzJoFkdAscrTwDvE0nV9lChoBmgJaA9DCGAeMuVDEPq/lIaUUpRoFUsyaBZHQLHKp3xWkrR1fZQoaAZoCWgPQwjo2az6XG0DwJSGlFKUaBVLMmgWR0CxyjKynk1edX2UKGgGaAloD0MIzxQ6r7EL87+UhpRSlGgVSzJoFkdAscn7PgNwznV9lChoBmgJaA9DCO3ShsPSQPC/lIaUUpRoFUsyaBZHQLHLv4h2W6d1fZQoaAZoCWgPQwiHpBZKJqfsv5SGlFKUaBVLMmgWR0Cxy5NLpRoAdX2UKGgGaAloD0MIryE4LuNGAcCUhpRSlGgVSzJoFkdAscsesbNr03V9lChoBmgJaA9DCAWHF0SkZvG/lIaUUpRoFUsyaBZHQLHK57+DOC51fZQoaAZoCWgPQwj3kPC9v0Hsv5SGlFKUaBVLMmgWR0CxzKfmT1TSdX2UKGgGaAloD0MIuW+1TlzO9b+UhpRSlGgVSzJoFkdAscx7oPkJbHV9lChoBmgJaA9DCJlnJa34Bva/lIaUUpRoFUsyaBZHQLHMB0e2d/d1fZQoaAZoCWgPQwgcQwBw7Fn/v5SGlFKUaBVLMmgWR0Cxy9BDXvphdX2UKGgGaAloD0MI5fG0/MAV8b+UhpRSlGgVSzJoFkdAsc2Orilzl3V9lChoBmgJaA9DCMXjolpEFP6/lIaUUpRoFUsyaBZHQLHNYi97F851fZQoaAZoCWgPQwjZWl8ktOX0v5SGlFKUaBVLMmgWR0CxzO3LeQ+2dX2UKGgGaAloD0MI203wTdNn7b+UhpRSlGgVSzJoFkdAscy2Vkc0cnV9lChoBmgJaA9DCCu9NhsrMeu/lIaUUpRoFUsyaBZHQLHOMcM3IdV1fZQoaAZoCWgPQwgB3Zcz25Xsv5SGlFKUaBVLMmgWR0CxzgUCFK02dX2UKGgGaAloD0MILPAV3XqN+r+UhpRSlGgVSzJoFkdAsc2P4dp7C3V9lChoBmgJaA9DCGMoJ9pVCPW/lIaUUpRoFUsyaBZHQLHNV+glF+d1fZQoaAZoCWgPQwiNCpxsA3ftv5SGlFKUaBVLMmgWR0Cxzrm8Zk08dX2UKGgGaAloD0MIFjJXBtWG67+UhpRSlGgVSzJoFkdAsc6NAhStNnV9lChoBmgJaA9DCDgQkgVMIPO/lIaUUpRoFUsyaBZHQLHOF+wkgOl1fZQoaAZoCWgPQwhs7BLVW8MHwJSGlFKUaBVLMmgWR0CxzeAIMSbpdX2UKGgGaAloD0MIvd9oxw0/97+UhpRSlGgVSzJoFkdAsc9AeA/cFnV9lChoBmgJaA9DCLYwC+2cBgHAlIaUUpRoFUsyaBZHQLHPE74BV+91fZQoaAZoCWgPQwio4zEDlbH5v5SGlFKUaBVLMmgWR0Cxzp7amGdqdX2UKGgGaAloD0MIDD1i9NwC+7+UhpRSlGgVSzJoFkdAsc5nBYV6/3V9lChoBmgJaA9DCBaGyOnrefy/lIaUUpRoFUsyaBZHQLHP0OARTS91fZQoaAZoCWgPQwjVsUrpmd7yv5SGlFKUaBVLMmgWR0Cxz6QljVhDdX2UKGgGaAloD0MI/TOD+MDO9L+UhpRSlGgVSzJoFkdAsc8vM+u/13V9lChoBmgJaA9DCD57LlOToPG/lIaUUpRoFUsyaBZHQLHO90fYBeZ1fZQoaAZoCWgPQwjhB+dTx2ryv5SGlFKUaBVLMmgWR0Cx0FwI+nqFdX2UKGgGaAloD0MIgq0SLA5n+7+UhpRSlGgVSzJoFkdAsdAvRSgoPXV9lChoBmgJaA9DCMReKGA7WAXAlIaUUpRoFUsyaBZHQLHPuk+5e7d1fZQoaAZoCWgPQwi/84sS9DcBwJSGlFKUaBVLMmgWR0Cxz4JTdcjadX2UKGgGaAloD0MIkfP+P05Y9b+UhpRSlGgVSzJoFkdAsdDmznied3V9lChoBmgJaA9DCLGlR1M9mQHAlIaUUpRoFUsyaBZHQLHQuhY/3WZ1fZQoaAZoCWgPQwjjxFc7inP+v5SGlFKUaBVLMmgWR0Cx0EUi2UjcdX2UKGgGaAloD0MIpmH4iJiS+b+UhpRSlGgVSzJoFkdAsdANP/JeV3V9lChoBmgJaA9DCDNslPWbSfq/lIaUUpRoFUsyaBZHQLHRckRSP2h1fZQoaAZoCWgPQwjLMO4G0Vr5v5SGlFKUaBVLMmgWR0Cx0UWRV6u5dX2UKGgGaAloD0MIDtsWZTbI5b+UhpRSlGgVSzJoFkdAsdDQox59mnV9lChoBmgJaA9DCOJcwwyNZ/m/lIaUUpRoFUsyaBZHQLHQmLkjopx1fZQoaAZoCWgPQwh6ibFMv8QDwJSGlFKUaBVLMmgWR0Cx0gHSro4ddX2UKGgGaAloD0MIgEi/fR049L+UhpRSlGgVSzJoFkdAsdHVJkGzKXV9lChoBmgJaA9DCNCbilQYW+W/lIaUUpRoFUsyaBZHQLHRYEd/8VJ1fZQoaAZoCWgPQwhjesISD6jzv5SGlFKUaBVLMmgWR0Cx0ShzeXRgdX2UKGgGaAloD0MIL96P2y8f+L+UhpRSlGgVSzJoFkdAsdKSk/KQrHV9lChoBmgJaA9DCO22C811mve/lIaUUpRoFUsyaBZHQLHSZd8zAN51fZQoaAZoCWgPQwhHVn4ZjNH0v5SGlFKUaBVLMmgWR0Cx0fDewcHXdX2UKGgGaAloD0MIcCcR4V8E+b+UhpRSlGgVSzJoFkdAsdG5AiV0LnV9lChoBmgJaA9DCKncRC3NbfK/lIaUUpRoFUsyaBZHQLHTIy/bj951fZQoaAZoCWgPQwisOUAwRw/vv5SGlFKUaBVLMmgWR0Cx0vaO938odX2UKGgGaAloD0MIIm5OJQOA87+UhpRSlGgVSzJoFkdAsdKBmseXA3V9lChoBmgJaA9DCD2BsFOsGvS/lIaUUpRoFUsyaBZHQLHSSb6P8yh1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
+ "_n_updates": 75000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:08221d786c7c6829d53efc22c7518f12c1ba01242a766bca55ae75e7d423a866
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5b64e74022daed4099b8bcaa0f821a9f3e826bd4a56035fdbdc5b2d6ee0349e
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7ed4f6c5e574286130b6a3d22d2a4eaa66d843fdf64499ae0f3b4a80e648056c
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f2e28cbc25c126e1d1ec35f77c88ba6d4c01e8faaa1bca7bf522c945d91df98
3
  size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f44df2dd280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f44df2d6ba0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675885541010691842, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArPTBPkl5ozs7CxU/rPTBPkl5ozs7CxU/rPTBPkl5ozs7CxU/rPTBPkl5ozs7CxU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArvOjO3LgXD/s0I6+fWWRPyA5Cb+NBie/yAWaPkEoLT/z9sm/whxlP5i/EL/0b62/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACs9ME+SXmjOzsLFT+Fn4G7BGQWuk9zMjys9ME+SXmjOzsLFT+Fn4G7BGQWuk9zMjys9ME+SXmjOzsLFT+Fn4G7BGQWuk9zMjys9ME+SXmjOzsLFT+Fn4G7BGQWuk9zMjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.37881982 0.00498882 0.5822026 ]\n [0.37881982 0.00498882 0.5822026 ]\n [0.37881982 0.00498882 0.5822026 ]\n [0.37881982 0.00498882 0.5822026 ]]", "desired_goal": "[[ 0.00500341 0.86279976 -0.2789377 ]\n [ 1.1359097 -0.5360279 -0.6524437 ]\n [ 0.30082536 0.6763955 -1.5778488 ]\n [ 0.89497006 -0.5654235 -1.354979 ]]", "observation": "[[ 3.78819823e-01 4.98882355e-03 5.82202613e-01 -3.95578379e-03\n -5.73694939e-04 1.08917495e-02]\n [ 3.78819823e-01 4.98882355e-03 5.82202613e-01 -3.95578379e-03\n -5.73694939e-04 1.08917495e-02]\n [ 3.78819823e-01 4.98882355e-03 5.82202613e-01 -3.95578379e-03\n -5.73694939e-04 1.08917495e-02]\n [ 3.78819823e-01 4.98882355e-03 5.82202613e-01 -3.95578379e-03\n -5.73694939e-04 1.08917495e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8XD1PbjJDz1dOG8+bn4ZvnNHxr2I04k+k+iEvYUwGL5o08A8E4BTPah3wD3i/Dw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.11984432 0.03510448 0.23361345]\n [-0.14989635 -0.09681597 0.26919198]\n [-0.06489673 -0.14862259 0.02353831]\n [ 0.05163581 0.09397823 0.18455842]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgLdAguJH+7+UhpRSlIwBbJRLMowBdJRHQKbrPpRGc4J1fZQoaAZoCWgPQwhGskeoGVL/v5SGlFKUaBVLMmgWR0Cm6uoNutOmdX2UKGgGaAloD0MII59XPPUoAsCUhpRSlGgVSzJoFkdApuqSC4Bmw3V9lChoBmgJaA9DCCB/aVGfJPC/lIaUUpRoFUsyaBZHQKbqPTqjaf11fZQoaAZoCWgPQwgPXru04bD2v5SGlFKUaBVLMmgWR0Cm7E/gR9PUdX2UKGgGaAloD0MIy9sRTgv+AcCUhpRSlGgVSzJoFkdApuv7UkOZs3V9lChoBmgJaA9DCPbv+sxZX/a/lIaUUpRoFUsyaBZHQKbro4Vh1DB1fZQoaAZoCWgPQwj04O6s3bb5v5SGlFKUaBVLMmgWR0Cm606sp5NXdX2UKGgGaAloD0MIoDaq04Fs8r+UhpRSlGgVSzJoFkdApu1nOhTOxHV9lChoBmgJaA9DCEjeOZShigfAlIaUUpRoFUsyaBZHQKbtEsI3R5V1fZQoaAZoCWgPQwiZKa2/JcD+v5SGlFKUaBVLMmgWR0Cm7Lrf1pTNdX2UKGgGaAloD0MIrhIsDmc+/L+UhpRSlGgVSzJoFkdApuxmEM9bHXV9lChoBmgJaA9DCCEHJcy0HQHAlIaUUpRoFUsyaBZHQKbufTrmhdt1fZQoaAZoCWgPQwhp/MIrSR78v5SGlFKUaBVLMmgWR0Cm7ii+De0pdX2UKGgGaAloD0MIjgOvljuz9r+UhpRSlGgVSzJoFkdApu3Q5R0lq3V9lChoBmgJaA9DCEjhehSuxwLAlIaUUpRoFUsyaBZHQKbtfDQ7cO91fZQoaAZoCWgPQwj/JalMMcf+v5SGlFKUaBVLMmgWR0Cm75ewTufFdX2UKGgGaAloD0MIRNsxdVf28b+UhpRSlGgVSzJoFkdApu9DeEZiu3V9lChoBmgJaA9DCIoD6Pf92wTAlIaUUpRoFUsyaBZHQKbu6912aDx1fZQoaAZoCWgPQwjI6lbPSe/wv5SGlFKUaBVLMmgWR0Cm7pc3l0YCdX2UKGgGaAloD0MIHEEqxY6G97+UhpRSlGgVSzJoFkdApvCuIl+mWXV9lChoBmgJaA9DCNMzvcRYRgHAlIaUUpRoFUsyaBZHQKbwWYjSofl1fZQoaAZoCWgPQwjnOo20VN75v5SGlFKUaBVLMmgWR0Cm8AGwqy4XdX2UKGgGaAloD0MI+fcZFw5ECcCUhpRSlGgVSzJoFkdApu+s6Lfk3nV9lChoBmgJaA9DCEjfpGlQdPi/lIaUUpRoFUsyaBZHQKbxy/etSyd1fZQoaAZoCWgPQwgSiNf1CzYEwJSGlFKUaBVLMmgWR0Cm8XdmYjSodX2UKGgGaAloD0MIbxKDwMoh8L+UhpRSlGgVSzJoFkdApvEfkT6BRXV9lChoBmgJaA9DCDf/rzpypPm/lIaUUpRoFUsyaBZHQKbwyr0aqCJ1fZQoaAZoCWgPQwimC7H6IwwCwJSGlFKUaBVLMmgWR0Cm8ufkFOfvdX2UKGgGaAloD0MIXf3YJD/i/7+UhpRSlGgVSzJoFkdApvKTcuanaXV9lChoBmgJaA9DCNPZyeAouQDAlIaUUpRoFUsyaBZHQKbyO6shgVp1fZQoaAZoCWgPQwjGv8+4cKDnv5SGlFKUaBVLMmgWR0Cm8eb4agmJdX2UKGgGaAloD0MIrMlTVtPVAcCUhpRSlGgVSzJoFkdApvP1GZuyeXV9lChoBmgJaA9DCCb8Uj9vKv6/lIaUUpRoFUsyaBZHQKbzoOAiFCd1fZQoaAZoCWgPQwgNHTuoxLUAwJSGlFKUaBVLMmgWR0Cm80kIHC40dX2UKGgGaAloD0MIaTo7GRwlBMCUhpRSlGgVSzJoFkdApvL0bR4QjHV9lChoBmgJaA9DCPBMaJJY0u2/lIaUUpRoFUsyaBZHQKb1GCmuTzN1fZQoaAZoCWgPQwgfSN45lKH5v5SGlFKUaBVLMmgWR0Cm9MOxKQJYdX2UKGgGaAloD0MIEHnL1Y/N9b+UhpRSlGgVSzJoFkdApvRr9S/CZXV9lChoBmgJaA9DCNAqM6X1dwfAlIaUUpRoFUsyaBZHQKb0FzmwJPZ1fZQoaAZoCWgPQwgLluoCXqb6v5SGlFKUaBVLMmgWR0Cm9jT1K5CodX2UKGgGaAloD0MIowOSsG9HBsCUhpRSlGgVSzJoFkdApvXg1He7+XV9lChoBmgJaA9DCLSu0XKgh/K/lIaUUpRoFUsyaBZHQKb1iQ8OkLx1fZQoaAZoCWgPQwjjNhrAW2D5v5SGlFKUaBVLMmgWR0Cm9TRHPNVzdX2UKGgGaAloD0MIjuiedY1W9L+UhpRSlGgVSzJoFkdApvdPUhFEzHV9lChoBmgJaA9DCKVL/5JUJvW/lIaUUpRoFUsyaBZHQKb2+4p+c6N1fZQoaAZoCWgPQwiGcw0zNB75v5SGlFKUaBVLMmgWR0Cm9qSLZSNwdX2UKGgGaAloD0MIT62+uirQ/b+UhpRSlGgVSzJoFkdApvZQb83uNXV9lChoBmgJaA9DCPTEc7aAUBDAlIaUUpRoFUsyaBZHQKb4Zd+G47R1fZQoaAZoCWgPQwjQ0hVsI976v5SGlFKUaBVLMmgWR0Cm+BFW4mTldX2UKGgGaAloD0MIem02VmIeBMCUhpRSlGgVSzJoFkdApve5dKNADHV9lChoBmgJaA9DCCPA6V28/wXAlIaUUpRoFUsyaBZHQKb3ZJ7sv7F1fZQoaAZoCWgPQwhMio9PyM7dv5SGlFKUaBVLMmgWR0Cm+X6Q/5ckdX2UKGgGaAloD0MIJSNnYU/bCMCUhpRSlGgVSzJoFkdApvkqDbrTpnV9lChoBmgJaA9DCFcm/FI/7wXAlIaUUpRoFUsyaBZHQKb40jX4CZF1fZQoaAZoCWgPQwhYqaCi6hcNwJSGlFKUaBVLMmgWR0Cm+H1uBMBZdX2UKGgGaAloD0MI220XmusUCMCUhpRSlGgVSzJoFkdApvqJ/0/W2HV9lChoBmgJaA9DCFLTLqaZ7ve/lIaUUpRoFUsyaBZHQKb6NY+Sr5t1fZQoaAZoCWgPQwj6gEBn0ub+v5SGlFKUaBVLMmgWR0Cm+d3EZR8/dX2UKGgGaAloD0MI5NcPscGiA8CUhpRSlGgVSzJoFkdApvmI2bXpW3V9lChoBmgJaA9DCEinrnyWp/G/lIaUUpRoFUsyaBZHQKb7mYtQKrt1fZQoaAZoCWgPQwgIq7GEtZEJwJSGlFKUaBVLMmgWR0Cm+0UDEFW5dX2UKGgGaAloD0MIC7Q7pBig+b+UhpRSlGgVSzJoFkdApvrs2tMfzXV9lChoBmgJaA9DCMmP+BVr2AXAlIaUUpRoFUsyaBZHQKb6mA8Swnp1fZQoaAZoCWgPQwhh4o+izlzwv5SGlFKUaBVLMmgWR0Cm/K0ALiMpdX2UKGgGaAloD0MI7C+7Jw/L+b+UhpRSlGgVSzJoFkdApvxYevIOpnV9lChoBmgJaA9DCO23dqIkZP+/lIaUUpRoFUsyaBZHQKb8AKZ2IO91fZQoaAZoCWgPQwikU1c+yxMAwJSGlFKUaBVLMmgWR0Cm+6vrWy1NdX2UKGgGaAloD0MI0eY4twn3DsCUhpRSlGgVSzJoFkdApv3GEM9bHXV9lChoBmgJaA9DCFdfXRWoZQ3AlIaUUpRoFUsyaBZHQKb9cX5WRzR1fZQoaAZoCWgPQwiNfjScMlcJwJSGlFKUaBVLMmgWR0Cm/Rmk30f6dX2UKGgGaAloD0MILLZJRWNNDMCUhpRSlGgVSzJoFkdApvzE3++/QHV9lChoBmgJaA9DCGkZqfdUrgnAlIaUUpRoFUsyaBZHQKb+6+qR2bJ1fZQoaAZoCWgPQwjU8gNXeQL5v5SGlFKUaBVLMmgWR0Cm/pgJTl1bdX2UKGgGaAloD0MI3QphNZYw7L+UhpRSlGgVSzJoFkdApv5BbnoxH3V9lChoBmgJaA9DCM0FLo81I/u/lIaUUpRoFUsyaBZHQKb97LHMlkZ1fZQoaAZoCWgPQwg486s5QPD7v5SGlFKUaBVLMmgWR0CnAJM8YAKfdX2UKGgGaAloD0MIumkzTkNU8r+UhpRSlGgVSzJoFkdApwA/f4yoGnV9lChoBmgJaA9DCKCM8WH2EgbAlIaUUpRoFUsyaBZHQKb/6FsYVIt1fZQoaAZoCWgPQwjXv+szZz36v5SGlFKUaBVLMmgWR0Cm/5QblzU7dX2UKGgGaAloD0MIIxKFlnV/+b+UhpRSlGgVSzJoFkdApwJZPO6d2HV9lChoBmgJaA9DCP5jIToEjvS/lIaUUpRoFUsyaBZHQKcCBVLBbfR1fZQoaAZoCWgPQwhIisiwivcCwJSGlFKUaBVLMmgWR0CnAa5MURFrdX2UKGgGaAloD0MIon2s4Leh77+UhpRSlGgVSzJoFkdApwFafjCHh3V9lChoBmgJaA9DCFD9g0iGnPO/lIaUUpRoFUsyaBZHQKcEJTDO1OV1fZQoaAZoCWgPQwj4p1SJsjcDwJSGlFKUaBVLMmgWR0CnA9Fd1MdtdX2UKGgGaAloD0MIcR5OYDpt9L+UhpRSlGgVSzJoFkdApwN6X8fmtHV9lChoBmgJaA9DCG5sdqT6jvm/lIaUUpRoFUsyaBZHQKcDJpW3jMp1fZQoaAZoCWgPQwh/pIgMq7j6v5SGlFKUaBVLMmgWR0CnBgohpxm1dX2UKGgGaAloD0MISwUVVb+S/L+UhpRSlGgVSzJoFkdApwW2oLofS3V9lChoBmgJaA9DCLfSa7OxMgXAlIaUUpRoFUsyaBZHQKcFX961LJ11fZQoaAZoCWgPQwj8qIb9nlj4v5SGlFKUaBVLMmgWR0CnBQu5BkZrdX2UKGgGaAloD0MIJF6ezhWl97+UhpRSlGgVSzJoFkdApwfuzSkTH3V9lChoBmgJaA9DCJQxPsxeNgPAlIaUUpRoFUsyaBZHQKcHm0l7dBV1fZQoaAZoCWgPQwghWcAEbl3qv5SGlFKUaBVLMmgWR0CnB0RzzVc2dX2UKGgGaAloD0MI5ZmXw+67DcCUhpRSlGgVSzJoFkdApwbwrFwT/XV9lChoBmgJaA9DCKoPJO8cyu2/lIaUUpRoFUsyaBZHQKcJeTAWSEF1fZQoaAZoCWgPQwgTu7a3W3INwJSGlFKUaBVLMmgWR0CnCSSpR4yHdX2UKGgGaAloD0MIDJQUWAAjEMCUhpRSlGgVSzJoFkdApwjMyP+4snV9lChoBmgJaA9DCKvRqwFKQ/O/lIaUUpRoFUsyaBZHQKcIeAUcn3N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f952e70f700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f952e767e10>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676392223871296911, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATVXUPl8/J7s8BRA/TVXUPl8/J7s8BRA/TVXUPl8/J7s8BRA/TVXUPl8/J7s8BRA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaEJbP4UHaj+ID7W/4dG8P+4crT9iT7S/dqY1v6towz9Mqem+mHIyvnxqEz90Isa+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABNVdQ+Xz8nuzwFED9Ardu6hKUiuoizBTxNVdQ+Xz8nuzwFED9Ardu6hKUiuoizBTxNVdQ+Xz8nuzwFED9Ardu6hKUiuoizBTxNVdQ+Xz8nuzwFED9Ardu6hKUiuoizBTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4147133 -0.00255199 0.5625799 ]\n [ 0.4147133 -0.00255199 0.5625799 ]\n [ 0.4147133 -0.00255199 0.5625799 ]\n [ 0.4147133 -0.00255199 0.5625799 ]]", "desired_goal": "[[ 0.856482 0.91417724 -1.4145365 ]\n [ 1.475155 1.3524454 -1.4086726 ]\n [-0.70957124 1.5266317 -0.45636976]\n [-0.17426527 0.5758436 -0.3869816 ]]", "observation": "[[ 0.4147133 -0.00255199 0.5625799 -0.001676 -0.00062045 0.00816048]\n [ 0.4147133 -0.00255199 0.5625799 -0.001676 -0.00062045 0.00816048]\n [ 0.4147133 -0.00255199 0.5625799 -0.001676 -0.00062045 0.00816048]\n [ 0.4147133 -0.00255199 0.5625799 -0.001676 -0.00062045 0.00816048]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAp6mmPWSGsj0hoaw9NyoZPi2+Ur2Fpkk+xXD4vUDfsT1Mn5E+UVRkvWE48b2OMVY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08137827 0.08717039 0.0842917 ]\n [ 0.1495751 -0.0514509 0.19692428]\n [-0.12130884 0.0868516 0.28441846]\n [-0.05574447 -0.11778332 0.20917341]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB/AWSFDcA8CUhpRSlIwBbJRLMowBdJRHQLHEAGus90R1fZQoaAZoCWgPQwimDBzQ0pUDwJSGlFKUaBVLMmgWR0Cxw9PC66J7dX2UKGgGaAloD0MIbRrba0EPA8CUhpRSlGgVSzJoFkdAscNer3j+73V9lChoBmgJaA9DCLbaw14oAALAlIaUUpRoFUsyaBZHQLHDJrIHTql1fZQoaAZoCWgPQwhO1NLcCkEEwJSGlFKUaBVLMmgWR0CxxIZBcAzYdX2UKGgGaAloD0MIYd7jTBMWAMCUhpRSlGgVSzJoFkdAscRZZSvTw3V9lChoBmgJaA9DCHJQwkzbHwLAlIaUUpRoFUsyaBZHQLHD5FfAsTZ1fZQoaAZoCWgPQwiSkh6GVscBwJSGlFKUaBVLMmgWR0Cxw6xiTdLydX2UKGgGaAloD0MIdTxmoDJ+9r+UhpRSlGgVSzJoFkdAscUNX/5tWXV9lChoBmgJaA9DCMJQhxVuufm/lIaUUpRoFUsyaBZHQLHE4KhL5AR1fZQoaAZoCWgPQwhoImx4eoUAwJSGlFKUaBVLMmgWR0CxxGu/xlQNdX2UKGgGaAloD0MIuvjbniDRAMCUhpRSlGgVSzJoFkdAscQz2f02+HV9lChoBmgJaA9DCMADAwgfyv+/lIaUUpRoFUsyaBZHQLHFkkMkQf91fZQoaAZoCWgPQwgHXFfMCI8BwJSGlFKUaBVLMmgWR0CxxWWycCo1dX2UKGgGaAloD0MIkrHa/L/KA8CUhpRSlGgVSzJoFkdAscTw2sJY1nV9lChoBmgJaA9DCILlCBnIcwPAlIaUUpRoFUsyaBZHQLHEuP9kz411fZQoaAZoCWgPQwgFFOrpIzD+v5SGlFKUaBVLMmgWR0CxxiJ4B3iadX2UKGgGaAloD0MIx735DRONBcCUhpRSlGgVSzJoFkdAscX1uMuOCHV9lChoBmgJaA9DCKjHtgw4CwPAlIaUUpRoFUsyaBZHQLHFgMBZIQR1fZQoaAZoCWgPQwhm+iXirfP9v5SGlFKUaBVLMmgWR0CxxUkILPUsdX2UKGgGaAloD0MIj6omiLrPA8CUhpRSlGgVSzJoFkdAscavRmbsnnV9lChoBmgJaA9DCLWNP1HZsPG/lIaUUpRoFUsyaBZHQLHGgpB5X2d1fZQoaAZoCWgPQwhmEB/Y8R//v5SGlFKUaBVLMmgWR0Cxxg1zZHurdX2UKGgGaAloD0MIKxVUVP2K8r+UhpRSlGgVSzJoFkdAscXVjz7MxHV9lChoBmgJaA9DCHy2Dg72pvi/lIaUUpRoFUsyaBZHQLHHPah6By11fZQoaAZoCWgPQwiNCTGXVK32v5SGlFKUaBVLMmgWR0CxxxD41xbTdX2UKGgGaAloD0MI2bJ8XYY/9b+UhpRSlGgVSzJoFkdAscacBo24u3V9lChoBmgJaA9DCKhTHt0IS/G/lIaUUpRoFUsyaBZHQLHGZCWu5jJ1fZQoaAZoCWgPQwj8G7RXHw/0v5SGlFKUaBVLMmgWR0Cxx8r6P8yfdX2UKGgGaAloD0MIAAAAAABAAcCUhpRSlGgVSzJoFkdAsceeNp/PPnV9lChoBmgJaA9DCJGYoIZv4fG/lIaUUpRoFUsyaBZHQLHHKUg0TDh1fZQoaAZoCWgPQwhuFi8Whsjzv5SGlFKUaBVLMmgWR0CxxvFoDgZTdX2UKGgGaAloD0MIfH2tS43Q8L+UhpRSlGgVSzJoFkdAschUhKUVz3V9lChoBmgJaA9DCHDs2XOZmuq/lIaUUpRoFUsyaBZHQLHIJ+jua4N1fZQoaAZoCWgPQwjvkjgroqb3v5SGlFKUaBVLMmgWR0Cxx7LwrlNldX2UKGgGaAloD0MIzLipgeZz/7+UhpRSlGgVSzJoFkdAscd7EdeY2XV9lChoBmgJaA9DCINMMnIWdum/lIaUUpRoFUsyaBZHQLHJEabF0gd1fZQoaAZoCWgPQwhbtWtCWuP1v5SGlFKUaBVLMmgWR0CxyOU9lmOEdX2UKGgGaAloD0MIJLcm3ZYI+r+UhpRSlGgVSzJoFkdAschwvIwM6XV9lChoBmgJaA9DCM77/zhhAvW/lIaUUpRoFUsyaBZHQLHIOVlPJq91fZQoaAZoCWgPQwjHn6hsWBP7v5SGlFKUaBVLMmgWR0CxyfUSuhbodX2UKGgGaAloD0MIQ1Thz/Bm/L+UhpRSlGgVSzJoFkdAscnI3Q2MsHV9lChoBmgJaA9DCG6GG/D5IQHAlIaUUpRoFUsyaBZHQLHJVA5aNdZ1fZQoaAZoCWgPQwgE54wo7U3/v5SGlFKUaBVLMmgWR0CxyRyQHRkVdX2UKGgGaAloD0MI7N/1mbP+8r+UhpRSlGgVSzJoFkdAscrTwDvE0nV9lChoBmgJaA9DCGAeMuVDEPq/lIaUUpRoFUsyaBZHQLHKp3xWkrR1fZQoaAZoCWgPQwjo2az6XG0DwJSGlFKUaBVLMmgWR0CxyjKynk1edX2UKGgGaAloD0MIzxQ6r7EL87+UhpRSlGgVSzJoFkdAscn7PgNwznV9lChoBmgJaA9DCO3ShsPSQPC/lIaUUpRoFUsyaBZHQLHLv4h2W6d1fZQoaAZoCWgPQwiHpBZKJqfsv5SGlFKUaBVLMmgWR0Cxy5NLpRoAdX2UKGgGaAloD0MIryE4LuNGAcCUhpRSlGgVSzJoFkdAscsesbNr03V9lChoBmgJaA9DCAWHF0SkZvG/lIaUUpRoFUsyaBZHQLHK57+DOC51fZQoaAZoCWgPQwj3kPC9v0Hsv5SGlFKUaBVLMmgWR0CxzKfmT1TSdX2UKGgGaAloD0MIuW+1TlzO9b+UhpRSlGgVSzJoFkdAscx7oPkJbHV9lChoBmgJaA9DCJlnJa34Bva/lIaUUpRoFUsyaBZHQLHMB0e2d/d1fZQoaAZoCWgPQwgcQwBw7Fn/v5SGlFKUaBVLMmgWR0Cxy9BDXvphdX2UKGgGaAloD0MI5fG0/MAV8b+UhpRSlGgVSzJoFkdAsc2Orilzl3V9lChoBmgJaA9DCMXjolpEFP6/lIaUUpRoFUsyaBZHQLHNYi97F851fZQoaAZoCWgPQwjZWl8ktOX0v5SGlFKUaBVLMmgWR0CxzO3LeQ+2dX2UKGgGaAloD0MI203wTdNn7b+UhpRSlGgVSzJoFkdAscy2Vkc0cnV9lChoBmgJaA9DCCu9NhsrMeu/lIaUUpRoFUsyaBZHQLHOMcM3IdV1fZQoaAZoCWgPQwgB3Zcz25Xsv5SGlFKUaBVLMmgWR0CxzgUCFK02dX2UKGgGaAloD0MILPAV3XqN+r+UhpRSlGgVSzJoFkdAsc2P4dp7C3V9lChoBmgJaA9DCGMoJ9pVCPW/lIaUUpRoFUsyaBZHQLHNV+glF+d1fZQoaAZoCWgPQwiNCpxsA3ftv5SGlFKUaBVLMmgWR0Cxzrm8Zk08dX2UKGgGaAloD0MIFjJXBtWG67+UhpRSlGgVSzJoFkdAsc6NAhStNnV9lChoBmgJaA9DCDgQkgVMIPO/lIaUUpRoFUsyaBZHQLHOF+wkgOl1fZQoaAZoCWgPQwhs7BLVW8MHwJSGlFKUaBVLMmgWR0CxzeAIMSbpdX2UKGgGaAloD0MIvd9oxw0/97+UhpRSlGgVSzJoFkdAsc9AeA/cFnV9lChoBmgJaA9DCLYwC+2cBgHAlIaUUpRoFUsyaBZHQLHPE74BV+91fZQoaAZoCWgPQwio4zEDlbH5v5SGlFKUaBVLMmgWR0Cxzp7amGdqdX2UKGgGaAloD0MIDD1i9NwC+7+UhpRSlGgVSzJoFkdAsc5nBYV6/3V9lChoBmgJaA9DCBaGyOnrefy/lIaUUpRoFUsyaBZHQLHP0OARTS91fZQoaAZoCWgPQwjVsUrpmd7yv5SGlFKUaBVLMmgWR0Cxz6QljVhDdX2UKGgGaAloD0MI/TOD+MDO9L+UhpRSlGgVSzJoFkdAsc8vM+u/13V9lChoBmgJaA9DCD57LlOToPG/lIaUUpRoFUsyaBZHQLHO90fYBeZ1fZQoaAZoCWgPQwjhB+dTx2ryv5SGlFKUaBVLMmgWR0Cx0FwI+nqFdX2UKGgGaAloD0MIgq0SLA5n+7+UhpRSlGgVSzJoFkdAsdAvRSgoPXV9lChoBmgJaA9DCMReKGA7WAXAlIaUUpRoFUsyaBZHQLHPuk+5e7d1fZQoaAZoCWgPQwi/84sS9DcBwJSGlFKUaBVLMmgWR0Cxz4JTdcjadX2UKGgGaAloD0MIkfP+P05Y9b+UhpRSlGgVSzJoFkdAsdDmznied3V9lChoBmgJaA9DCLGlR1M9mQHAlIaUUpRoFUsyaBZHQLHQuhY/3WZ1fZQoaAZoCWgPQwjjxFc7inP+v5SGlFKUaBVLMmgWR0Cx0EUi2UjcdX2UKGgGaAloD0MIpmH4iJiS+b+UhpRSlGgVSzJoFkdAsdANP/JeV3V9lChoBmgJaA9DCDNslPWbSfq/lIaUUpRoFUsyaBZHQLHRckRSP2h1fZQoaAZoCWgPQwjLMO4G0Vr5v5SGlFKUaBVLMmgWR0Cx0UWRV6u5dX2UKGgGaAloD0MIDtsWZTbI5b+UhpRSlGgVSzJoFkdAsdDQox59mnV9lChoBmgJaA9DCOJcwwyNZ/m/lIaUUpRoFUsyaBZHQLHQmLkjopx1fZQoaAZoCWgPQwh6ibFMv8QDwJSGlFKUaBVLMmgWR0Cx0gHSro4ddX2UKGgGaAloD0MIgEi/fR049L+UhpRSlGgVSzJoFkdAsdHVJkGzKXV9lChoBmgJaA9DCNCbilQYW+W/lIaUUpRoFUsyaBZHQLHRYEd/8VJ1fZQoaAZoCWgPQwhjesISD6jzv5SGlFKUaBVLMmgWR0Cx0ShzeXRgdX2UKGgGaAloD0MIL96P2y8f+L+UhpRSlGgVSzJoFkdAsdKSk/KQrHV9lChoBmgJaA9DCO22C811mve/lIaUUpRoFUsyaBZHQLHSZd8zAN51fZQoaAZoCWgPQwhHVn4ZjNH0v5SGlFKUaBVLMmgWR0Cx0fDewcHXdX2UKGgGaAloD0MIcCcR4V8E+b+UhpRSlGgVSzJoFkdAsdG5AiV0LnV9lChoBmgJaA9DCKncRC3NbfK/lIaUUpRoFUsyaBZHQLHTIy/bj951fZQoaAZoCWgPQwisOUAwRw/vv5SGlFKUaBVLMmgWR0Cx0vaO938odX2UKGgGaAloD0MIIm5OJQOA87+UhpRSlGgVSzJoFkdAsdKBmseXA3V9lChoBmgJaA9DCD2BsFOsGvS/lIaUUpRoFUsyaBZHQLHSSb6P8yh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -2.5638069567270576, "std_reward": 0.9885286529856366, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-08T20:40:04.558160"}
 
1
+ {"mean_reward": -1.1755962422117592, "std_reward": 0.4591833006466877, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-14T17:47:25.619577"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2bbf1ce84fcaae01ed789ca83418be04d237934f3ec11fdac3d3b1652c84f64b
3
  size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c5bc1203984d75a542543cafbdc32e4e12426dec537c67b02af16e713015b03
3
  size 3056