Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1698.96 +/- 180.65
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1c71849d63ac2700160630ecac5eec25fb551b9113f795e75d20150a63e28b3
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f051be3eca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f051be3ed30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f051be3edc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f051be3ee50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f051be3eee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f051be3ef70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f051be42040>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f051be420d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f051be42160>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f051be421f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f051be42280>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f051be42310>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f051be3b960>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675807341454057442,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALutxz52d7w9K5oSP+V1iD9Durc+leggP+orhL86JLu/N2cYP9h22L5q6es+Bp9vv8r+jb84QmM/FP5BP+eoPL/YrU2/mxxUOjaqET8B0rW/5JKLvCqJvj6b+kO/uc5gP9bPg7/0swPA83kuPw/Rgb/7bWdAaCo9PidsEz/ssb6/2ppEPjdsVT1Ku869EY4ZP5LJE8BhMDq8QpwqwLIoYrx9x2E+dCn0OgICLEDhY8Y8uvNQv+43hrs2+yxAX37FPFOE3T/a+D08dY0VwLF8brzWz4O/9LMDwMPOu78P0YG/914lv1sUzr7MyuM+VLgMP7wtbr6fnFk9M8vwPgyUOz5TZAA/XZ47v8pQ+T3YwHe/ELOXv77LEz/Urkg/uzs0v661jb5Kh5y9llH0PlG0wb+JxIY+hGcaP0bXOb/WcXk/xJh4P/SzA8DzeS4/D9GBvz7ljD9nOCq/AVmXPs2kfz8nKu+/E76wPh2b+79ojYy/LPWVPrzQuL9JB7a+djv1v227ir9xmVs+40JQPyX5sT8c94W/QICZvp0gMr9Q74a/cEkkQHWuwj6gTEy+pmbNP9bPg79lzfg+83kuPw/Rgb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADVXKw1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6bTLvQAAAAAgauO/AAAAAKee/rwAAAAA0FX0PwAAAADmKNk8AAAAAJ8eAUAAAAAAr28ZPQAAAAD0c/6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAl2HAtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLHQxz0AAAAA28XavwAAAADalQ2+AAAAAPx34T8AAAAAqdnHPQAAAAAHKOc/AAAAAG9Zib0AAAAAJ7/7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfyQrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDJ6Yw9AAAAAGGL3b8AAAAAN0j4PQAAAADCi+c/AAAAADbaz70AAAAATA77PwAAAACUoqc9AAAAAAV7/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABRtfS0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAscWMPQAAAAC8Mfi/AAAAACkDgz0AAAAAgRDuPwAAAADvkaM7AAAAAGEc2j8AAAAAoxe1PAAAAAC3lPW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrRUihWYF+MAWyUTegDjAF0lEdAtGh1fNRm9XV9lChoBkdAmiMzlo11n2gHTegDaAhHQLRs1tAcDKZ1fZQoaAZHQJXNNfqoqCpoB03oA2gIR0C0bN6hxo7FdX2UKGgGR0CYYF+Y+jdpaAdN6ANoCEdAtG4zBVMmGHV9lChoBkdAdXXy8BdUsGgHTegDaAhHQLRwEHTqjah1fZQoaAZHQJp80oTfzjFoB03oA2gIR0C0cxVejVQRdX2UKGgGR0CX0bapgkTpaAdN6ANoCEdAtHMcht+CsnV9lChoBkdAc0KzVMEidWgHTegDaAhHQLR0c5+pfhN1fZQoaAZHQG60EWAPNFBoB03oA2gIR0C0dkyCjDbbdX2UKGgGR0CZWVzkp7TlaAdN6ANoCEdAtHpcNUfgaXV9lChoBkdAmMF2D6Fds2gHTegDaAhHQLR6ZroW56N1fZQoaAZHQHbnTafzz3BoB03oA2gIR0C0fE9ALRa5dX2UKGgGR0CZDlxwQ176aAdN6ANoCEdAtH4se+23KHV9lChoBkdAZgK5Dqnm72gHTegDaAhHQLSBIwHZ9NN1fZQoaAZHQIRWo5NoJzFoB03oA2gIR0C0gSnwob4rdX2UKGgGR0CYSfL+xW1daAdN6ANoCEdAtIJ8k1Mue3V9lChoBkdAlO6BKYiPhmgHTegDaAhHQLSEWiIcinp1fZQoaAZHQJA1TnB+F11oB03oA2gIR0C0h85DZ13ddX2UKGgGR0CZONam4y44aAdN6ANoCEdAtIfYSqU/wHV9lChoBkdAlv13KGL1mWgHTegDaAhHQLSJ59Sde6Z1fZQoaAZHQIojg7NjbztoB03oA2gIR0C0jDHEl3QldX2UKGgGR0CYRrTGYKIBaAdN6ANoCEdAtI8RPO6d2HV9lChoBkdAmWd/Nqxkd2gHTegDaAhHQLSPGJ4B3id1fZQoaAZHQHj3v5k9U0hoB03oA2gIR0C0kISz1K5DdX2UKGgGR0CXcRHD7655aAdN6ANoCEdAtJJWt9x6wHV9lChoBkdAfKLV45cTrWgHTegDaAhHQLSVXg5BC2N1fZQoaAZHQJdzi+De0oloB03oA2gIR0C0lWfNqxkedX2UKGgGR0CYmSCCz1K5aAdN6ANoCEdAtJdKALApKHV9lChoBkdAlWpm0NSZSmgHTegDaAhHQLSaEVFhG6R1fZQoaAZHQJQUKOXE61doB03oA2gIR0C0nPxIvrWzdX2UKGgGR0CYmMzeoDPoaAdN6ANoCEdAtJ0DZoPCmHV9lChoBkdAhVyEKmbb12gHTegDaAhHQLSeWIwM6R11fZQoaAZHQHQBQa3qiXZoB03oA2gIR0C0oC0Jv5xjdX2UKGgGR0CSY473wkPdaAdN6ANoCEdAtKMRev6j33V9lChoBkdAlHCESRKYiWgHTegDaAhHQLSjGKTSssB1fZQoaAZHQI6rNn003wVoB03oA2gIR0C0pIqoIfKZdX2UKGgGR0CS3UyAhB7eaAdN6ANoCEdAtKdS6PKdQXV9lChoBkdAiw+8wQDmsGgHTegDaAhHQLSq+/Rmbsp1fZQoaAZHQHTzSNfgJkZoB03oA2gIR0C0qwOGCZnddX2UKGgGR0CLvb5VOsT4aAdN6ANoCEdAtKxfIRywOnV9lChoBkdAiF1KQiiZfGgHTegDaAhHQLSuOhxHXmN1fZQoaAZHQIqYBWPtD2JoB03oA2gIR0C0sUOfdyksdX2UKGgGR0CEJtkDp1RtaAdN6ANoCEdAtLFK3XqZ+nV9lChoBkdAhS31FQVKw2gHTegDaAhHQLSynRMN+b51fZQoaAZHQIo8+7rcCYFoB03oA2gIR0C0tOyEUTL4dX2UKGgGR0CW7P2AoXsPaAdN6ANoCEdAtLkVrftQbnV9lChoBkdAk0yJvUBnz2gHTegDaAhHQLS5HSkj5bh1fZQoaAZHQIRoE94eLehoB03oA2gIR0C0umrEcbR4dX2UKGgGR0B5r+j59E1EaAdN6ANoCEdAtLw/GCI1tXV9lChoBkdAmc5Mj7hvSGgHTegDaAhHQLS/FM/yGzt1fZQoaAZHQJHnNZX+2mZoB03oA2gIR0C0vxvZdv87dX2UKGgGR0CTpZj3mFJyaAdN6ANoCEdAtMBr/0dzXHV9lChoBkdAlCtcPz4DcWgHTegDaAhHQLTCQCOWBz51fZQoaAZHQJS28THsC1ZoB01QA2gIR0C0xQmoNutPdX2UKGgGR0CWD1qiXY16aAdN6ANoCEdAtMZmi9IwunV9lChoBkdAmOKJKJ2t+2gHTegDaAhHQLTIKiKziS91fZQoaAZHQIeSPT5O8ChoB03oA2gIR0C0ygTIV/MGdX2UKGgGR0CHi3jLB9CvaAdN6ANoCEdAtMwQMDwH7nV9lChoBkdAdun56MR6GGgHTegDaAhHQLTNDeN1hb51fZQoaAZHQJl5c6kqMFVoB03oA2gIR0C0zm08ifQKdX2UKGgGR0CXqmEB8x9HaAdN6ANoCEdAtNA5uNxVAHV9lChoBkdAl1wpB9kSVWgHTegDaAhHQLTSjMYuTRp1fZQoaAZHQJKVzvlU6xRoB03oA2gIR0C009gNoakzdX2UKGgGR0CUxvvllsguaAdN6ANoCEdAtNX5cHGCI3V9lChoBkdAl+hM6NlyzWgHTegDaAhHQLTZMeu3c591fZQoaAZHQJc9+UbDMvBoB03oA2gIR0C0277CFbmmdX2UKGgGR0CXZWsJY1YRaAdN6ANoCEdAtNyf752yLXV9lChoBkdAmC4jgAIY32gHTegDaAhHQLTd6meDnNh1fZQoaAZHQJiUb/aQFLZoB03oA2gIR0C038K0tyxSdX2UKGgGR0CYVAygwoLHaAdN6ANoCEdAtOHDbL2YfHV9lChoBkdAl3F6TwDvE2gHTegDaAhHQLTjD42jwhJ1fZQoaAZHQIvl5nFo+OhoB03oA2gIR0C05SZFkQPJdX2UKGgGR0CEhcfFJg9eaAdN6ANoCEdAtOehNnGsFXV9lChoBkdAlkcYb4rSVmgHTegDaAhHQLTppCdjG1h1fZQoaAZHQJV6qOinHedoB03oA2gIR0C06oXFkxyodX2UKGgGR0CZ3bUaya/iaAdN6ANoCEdAtOvtfjS5RXV9lChoBkdAhOpHp0OmSGgHTegDaAhHQLTtr814xDd1fZQoaAZHQJcKOKziS7poB03oA2gIR0C076l1W8yvdX2UKGgGR0CXpXpLmITHaAdN6ANoCEdAtPCO5avA5HV9lChoBkdAl3MFHBk7OmgHTegDaAhHQLTyTkSmIj51fZQoaAZHQJNI0r5IpYtoB03oA2gIR0C09RslTm4idX2UKGgGR0CUVsjNY8uBaAdN6ANoCEdAtPdjxz7uUnV9lChoBkdAlwL+3+dbxGgHTegDaAhHQLT4RNrj5sV1fZQoaAZHQJr/bFyaNMpoB03oA2gIR0C0+Zypm29ddX2UKGgGR0CVvDEuxrzoaAdN6ANoCEdAtPtt9b5dnnV9lChoBkdAm01kmUnogWgHTegDaAhHQLT9aqJ/G2l1fZQoaAZHQJ3ZjL9uP3loB03oA2gIR0C0/kehXbM5dX2UKGgGR0Cbfn6f8MuwaAdN6ANoCEdAtP+Zu63AmHV9lChoBkdAj9aQvpQk5mgHTegDaAhHQLUCBxOtW+51fZQoaAZHQJxSHxgAp8ZoB03oA2gIR0C1BQkTtb9qdX2UKGgGR0CZBXflp48maAdN6ANoCEdAtQX5PM0P6XV9lChoBkdAmyPcU7CBPWgHTegDaAhHQLUHSVFQVKx1fZQoaAZHQJgJdsnAqNJoB03oA2gIR0C1CRHjdYW+dX2UKGgGR0CSsTUqhDgJaAdN6ANoCEdAtQsiSTyJ9HV9lChoBkdAklKEJa7mMmgHTegDaAhHQLUMCciGFi91fZQoaAZHQJS4tpXZGrloB03oA2gIR0C1DWRP0qYrdX2UKGgGR0CSSCNVBD5TaAdN6ANoCEdAtQ9Ay44IbHV9lChoBkdAiwm2t+1Bt2gHTegDaAhHQLUSJ/NJOFh1fZQoaAZHQJse7PE87p5oB03oA2gIR0C1E3w4jrzHdX2UKGgGR0CWlg5Z8rqdaAdN6ANoCEdAtRUV5rxiG3VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 94939,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b98330e9f845e510a924a9e14f137cedd902cdf8e11fb7ca83f728f09dc349b0
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58f26ff2e6552c745f06a02a2b8d507b6a9f5c4682315ea9849d988b1fdfa2f5
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f051be3eca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f051be3ed30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f051be3edc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f051be3ee50>", "_build": "<function ActorCriticPolicy._build at 0x7f051be3eee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f051be3ef70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f051be42040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f051be420d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f051be42160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f051be421f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f051be42280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f051be42310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f051be3b960>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675807341454057442, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALutxz52d7w9K5oSP+V1iD9Durc+leggP+orhL86JLu/N2cYP9h22L5q6es+Bp9vv8r+jb84QmM/FP5BP+eoPL/YrU2/mxxUOjaqET8B0rW/5JKLvCqJvj6b+kO/uc5gP9bPg7/0swPA83kuPw/Rgb/7bWdAaCo9PidsEz/ssb6/2ppEPjdsVT1Ku869EY4ZP5LJE8BhMDq8QpwqwLIoYrx9x2E+dCn0OgICLEDhY8Y8uvNQv+43hrs2+yxAX37FPFOE3T/a+D08dY0VwLF8brzWz4O/9LMDwMPOu78P0YG/914lv1sUzr7MyuM+VLgMP7wtbr6fnFk9M8vwPgyUOz5TZAA/XZ47v8pQ+T3YwHe/ELOXv77LEz/Urkg/uzs0v661jb5Kh5y9llH0PlG0wb+JxIY+hGcaP0bXOb/WcXk/xJh4P/SzA8DzeS4/D9GBvz7ljD9nOCq/AVmXPs2kfz8nKu+/E76wPh2b+79ojYy/LPWVPrzQuL9JB7a+djv1v227ir9xmVs+40JQPyX5sT8c94W/QICZvp0gMr9Q74a/cEkkQHWuwj6gTEy+pmbNP9bPg79lzfg+83kuPw/Rgb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADVXKw1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6bTLvQAAAAAgauO/AAAAAKee/rwAAAAA0FX0PwAAAADmKNk8AAAAAJ8eAUAAAAAAr28ZPQAAAAD0c/6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAl2HAtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLHQxz0AAAAA28XavwAAAADalQ2+AAAAAPx34T8AAAAAqdnHPQAAAAAHKOc/AAAAAG9Zib0AAAAAJ7/7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfyQrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDJ6Yw9AAAAAGGL3b8AAAAAN0j4PQAAAADCi+c/AAAAADbaz70AAAAATA77PwAAAACUoqc9AAAAAAV7/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABRtfS0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAscWMPQAAAAC8Mfi/AAAAACkDgz0AAAAAgRDuPwAAAADvkaM7AAAAAGEc2j8AAAAAoxe1PAAAAAC3lPW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrRUihWYF+MAWyUTegDjAF0lEdAtGh1fNRm9XV9lChoBkdAmiMzlo11n2gHTegDaAhHQLRs1tAcDKZ1fZQoaAZHQJXNNfqoqCpoB03oA2gIR0C0bN6hxo7FdX2UKGgGR0CYYF+Y+jdpaAdN6ANoCEdAtG4zBVMmGHV9lChoBkdAdXXy8BdUsGgHTegDaAhHQLRwEHTqjah1fZQoaAZHQJp80oTfzjFoB03oA2gIR0C0cxVejVQRdX2UKGgGR0CX0bapgkTpaAdN6ANoCEdAtHMcht+CsnV9lChoBkdAc0KzVMEidWgHTegDaAhHQLR0c5+pfhN1fZQoaAZHQG60EWAPNFBoB03oA2gIR0C0dkyCjDbbdX2UKGgGR0CZWVzkp7TlaAdN6ANoCEdAtHpcNUfgaXV9lChoBkdAmMF2D6Fds2gHTegDaAhHQLR6ZroW56N1fZQoaAZHQHbnTafzz3BoB03oA2gIR0C0fE9ALRa5dX2UKGgGR0CZDlxwQ176aAdN6ANoCEdAtH4se+23KHV9lChoBkdAZgK5Dqnm72gHTegDaAhHQLSBIwHZ9NN1fZQoaAZHQIRWo5NoJzFoB03oA2gIR0C0gSnwob4rdX2UKGgGR0CYSfL+xW1daAdN6ANoCEdAtIJ8k1Mue3V9lChoBkdAlO6BKYiPhmgHTegDaAhHQLSEWiIcinp1fZQoaAZHQJA1TnB+F11oB03oA2gIR0C0h85DZ13ddX2UKGgGR0CZONam4y44aAdN6ANoCEdAtIfYSqU/wHV9lChoBkdAlv13KGL1mWgHTegDaAhHQLSJ59Sde6Z1fZQoaAZHQIojg7NjbztoB03oA2gIR0C0jDHEl3QldX2UKGgGR0CYRrTGYKIBaAdN6ANoCEdAtI8RPO6d2HV9lChoBkdAmWd/Nqxkd2gHTegDaAhHQLSPGJ4B3id1fZQoaAZHQHj3v5k9U0hoB03oA2gIR0C0kISz1K5DdX2UKGgGR0CXcRHD7655aAdN6ANoCEdAtJJWt9x6wHV9lChoBkdAfKLV45cTrWgHTegDaAhHQLSVXg5BC2N1fZQoaAZHQJdzi+De0oloB03oA2gIR0C0lWfNqxkedX2UKGgGR0CYmSCCz1K5aAdN6ANoCEdAtJdKALApKHV9lChoBkdAlWpm0NSZSmgHTegDaAhHQLSaEVFhG6R1fZQoaAZHQJQUKOXE61doB03oA2gIR0C0nPxIvrWzdX2UKGgGR0CYmMzeoDPoaAdN6ANoCEdAtJ0DZoPCmHV9lChoBkdAhVyEKmbb12gHTegDaAhHQLSeWIwM6R11fZQoaAZHQHQBQa3qiXZoB03oA2gIR0C0oC0Jv5xjdX2UKGgGR0CSY473wkPdaAdN6ANoCEdAtKMRev6j33V9lChoBkdAlHCESRKYiWgHTegDaAhHQLSjGKTSssB1fZQoaAZHQI6rNn003wVoB03oA2gIR0C0pIqoIfKZdX2UKGgGR0CS3UyAhB7eaAdN6ANoCEdAtKdS6PKdQXV9lChoBkdAiw+8wQDmsGgHTegDaAhHQLSq+/Rmbsp1fZQoaAZHQHTzSNfgJkZoB03oA2gIR0C0qwOGCZnddX2UKGgGR0CLvb5VOsT4aAdN6ANoCEdAtKxfIRywOnV9lChoBkdAiF1KQiiZfGgHTegDaAhHQLSuOhxHXmN1fZQoaAZHQIqYBWPtD2JoB03oA2gIR0C0sUOfdyksdX2UKGgGR0CEJtkDp1RtaAdN6ANoCEdAtLFK3XqZ+nV9lChoBkdAhS31FQVKw2gHTegDaAhHQLSynRMN+b51fZQoaAZHQIo8+7rcCYFoB03oA2gIR0C0tOyEUTL4dX2UKGgGR0CW7P2AoXsPaAdN6ANoCEdAtLkVrftQbnV9lChoBkdAk0yJvUBnz2gHTegDaAhHQLS5HSkj5bh1fZQoaAZHQIRoE94eLehoB03oA2gIR0C0umrEcbR4dX2UKGgGR0B5r+j59E1EaAdN6ANoCEdAtLw/GCI1tXV9lChoBkdAmc5Mj7hvSGgHTegDaAhHQLS/FM/yGzt1fZQoaAZHQJHnNZX+2mZoB03oA2gIR0C0vxvZdv87dX2UKGgGR0CTpZj3mFJyaAdN6ANoCEdAtMBr/0dzXHV9lChoBkdAlCtcPz4DcWgHTegDaAhHQLTCQCOWBz51fZQoaAZHQJS28THsC1ZoB01QA2gIR0C0xQmoNutPdX2UKGgGR0CWD1qiXY16aAdN6ANoCEdAtMZmi9IwunV9lChoBkdAmOKJKJ2t+2gHTegDaAhHQLTIKiKziS91fZQoaAZHQIeSPT5O8ChoB03oA2gIR0C0ygTIV/MGdX2UKGgGR0CHi3jLB9CvaAdN6ANoCEdAtMwQMDwH7nV9lChoBkdAdun56MR6GGgHTegDaAhHQLTNDeN1hb51fZQoaAZHQJl5c6kqMFVoB03oA2gIR0C0zm08ifQKdX2UKGgGR0CXqmEB8x9HaAdN6ANoCEdAtNA5uNxVAHV9lChoBkdAl1wpB9kSVWgHTegDaAhHQLTSjMYuTRp1fZQoaAZHQJKVzvlU6xRoB03oA2gIR0C009gNoakzdX2UKGgGR0CUxvvllsguaAdN6ANoCEdAtNX5cHGCI3V9lChoBkdAl+hM6NlyzWgHTegDaAhHQLTZMeu3c591fZQoaAZHQJc9+UbDMvBoB03oA2gIR0C0277CFbmmdX2UKGgGR0CXZWsJY1YRaAdN6ANoCEdAtNyf752yLXV9lChoBkdAmC4jgAIY32gHTegDaAhHQLTd6meDnNh1fZQoaAZHQJiUb/aQFLZoB03oA2gIR0C038K0tyxSdX2UKGgGR0CYVAygwoLHaAdN6ANoCEdAtOHDbL2YfHV9lChoBkdAl3F6TwDvE2gHTegDaAhHQLTjD42jwhJ1fZQoaAZHQIvl5nFo+OhoB03oA2gIR0C05SZFkQPJdX2UKGgGR0CEhcfFJg9eaAdN6ANoCEdAtOehNnGsFXV9lChoBkdAlkcYb4rSVmgHTegDaAhHQLTppCdjG1h1fZQoaAZHQJV6qOinHedoB03oA2gIR0C06oXFkxyodX2UKGgGR0CZ3bUaya/iaAdN6ANoCEdAtOvtfjS5RXV9lChoBkdAhOpHp0OmSGgHTegDaAhHQLTtr814xDd1fZQoaAZHQJcKOKziS7poB03oA2gIR0C076l1W8yvdX2UKGgGR0CXpXpLmITHaAdN6ANoCEdAtPCO5avA5HV9lChoBkdAl3MFHBk7OmgHTegDaAhHQLTyTkSmIj51fZQoaAZHQJNI0r5IpYtoB03oA2gIR0C09RslTm4idX2UKGgGR0CUVsjNY8uBaAdN6ANoCEdAtPdjxz7uUnV9lChoBkdAlwL+3+dbxGgHTegDaAhHQLT4RNrj5sV1fZQoaAZHQJr/bFyaNMpoB03oA2gIR0C0+Zypm29ddX2UKGgGR0CVvDEuxrzoaAdN6ANoCEdAtPtt9b5dnnV9lChoBkdAm01kmUnogWgHTegDaAhHQLT9aqJ/G2l1fZQoaAZHQJ3ZjL9uP3loB03oA2gIR0C0/kehXbM5dX2UKGgGR0Cbfn6f8MuwaAdN6ANoCEdAtP+Zu63AmHV9lChoBkdAj9aQvpQk5mgHTegDaAhHQLUCBxOtW+51fZQoaAZHQJxSHxgAp8ZoB03oA2gIR0C1BQkTtb9qdX2UKGgGR0CZBXflp48maAdN6ANoCEdAtQX5PM0P6XV9lChoBkdAmyPcU7CBPWgHTegDaAhHQLUHSVFQVKx1fZQoaAZHQJgJdsnAqNJoB03oA2gIR0C1CRHjdYW+dX2UKGgGR0CSsTUqhDgJaAdN6ANoCEdAtQsiSTyJ9HV9lChoBkdAklKEJa7mMmgHTegDaAhHQLUMCciGFi91fZQoaAZHQJS4tpXZGrloB03oA2gIR0C1DWRP0qYrdX2UKGgGR0CSSCNVBD5TaAdN6ANoCEdAtQ9Ay44IbHV9lChoBkdAiwm2t+1Bt2gHTegDaAhHQLUSJ/NJOFh1fZQoaAZHQJse7PE87p5oB03oA2gIR0C1E3w4jrzHdX2UKGgGR0CWlg5Z8rqdaAdN6ANoCEdAtRUV5rxiG3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 94939, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5976bfdd5b4ed52196098779bb08927259959a42ebb84cf10282f62a7505f071
|
3 |
+
size 1054446
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1698.9565873423592, "std_reward": 180.64889324097183, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-07T23:02:42.860000"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f80dba912ee3a45a124a32b1a6f334c370e662c123942a761c15d4fe84208dd
|
3 |
+
size 2136
|