--- base_model: aubmindlab/bert-base-arabertv02-twitter tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: Model4_arabertv2_base_T1_WS_A100 results: [] --- # Model4_arabertv2_base_T1_WS_A100 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1569 - F1: 0.8398 - F1 Macro: 0.7742 - Roc Auc: 0.9021 - Accuracy: 0.8073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | F1 Macro | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:-------:|:--------:| | 0.0988 | 1.0 | 507 | 0.1569 | 0.8398 | 0.7742 | 0.9021 | 0.8073 | | 0.056 | 2.0 | 1014 | 0.2023 | 0.8267 | 0.7610 | 0.8938 | 0.7912 | | 0.0358 | 3.0 | 1521 | 0.1959 | 0.8529 | 0.7889 | 0.9089 | 0.8275 | | 0.0204 | 4.0 | 2028 | 0.2132 | 0.8496 | 0.7971 | 0.9079 | 0.8226 | | 0.0157 | 5.0 | 2535 | 0.2288 | 0.8434 | 0.7789 | 0.9047 | 0.8163 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3