--- base_model: aubmindlab/bert-large-arabertv02-twitter tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: Araberv2_large results: [] --- # Araberv2_large This model is a fine-tuned version of [aubmindlab/bert-large-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-large-arabertv02-twitter) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3745 - F1: 0.5436 - F1 Macro: 0.1187 - Roc Auc: 0.7222 - Accuracy: 0.5531 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | F1 Macro | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:-------:|:--------:| | 0.3412 | 1.0 | 507 | 0.3815 | 0.5436 | 0.1187 | 0.7222 | 0.5531 | | 0.3775 | 2.0 | 1014 | 0.3745 | 0.5436 | 0.1187 | 0.7222 | 0.5531 | | 0.3768 | 3.0 | 1521 | 0.3914 | 0.5436 | 0.1187 | 0.7222 | 0.5531 | | 0.3764 | 4.0 | 2028 | 0.3745 | 0.5436 | 0.1187 | 0.7222 | 0.5531 | | 0.3714 | 5.0 | 2535 | 0.3870 | 0.5436 | 0.1187 | 0.7222 | 0.5531 | | 0.3697 | 6.0 | 3042 | 0.3835 | 0.5436 | 0.1187 | 0.7222 | 0.5531 | | 0.3688 | 7.0 | 3549 | 0.4026 | 0.5436 | 0.1187 | 0.7222 | 0.5531 | | 0.3654 | 8.0 | 4056 | 0.4771 | 0.5436 | 0.1187 | 0.7222 | 0.5531 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3