File size: 2,189 Bytes
b6c20d7 d0ec1af b6c20d7 d0ec1af b6c20d7 d0ec1af b6c20d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
base_model: aubmindlab/bert-large-arabertv02-twitter
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: Araberv2_large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Araberv2_large
This model is a fine-tuned version of [aubmindlab/bert-large-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-large-arabertv02-twitter) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3745
- F1: 0.5436
- F1 Macro: 0.1187
- Roc Auc: 0.7222
- Accuracy: 0.5531
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | F1 Macro | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:-------:|:--------:|
| 0.3412 | 1.0 | 507 | 0.3815 | 0.5436 | 0.1187 | 0.7222 | 0.5531 |
| 0.3775 | 2.0 | 1014 | 0.3745 | 0.5436 | 0.1187 | 0.7222 | 0.5531 |
| 0.3768 | 3.0 | 1521 | 0.3914 | 0.5436 | 0.1187 | 0.7222 | 0.5531 |
| 0.3764 | 4.0 | 2028 | 0.3745 | 0.5436 | 0.1187 | 0.7222 | 0.5531 |
| 0.3714 | 5.0 | 2535 | 0.3870 | 0.5436 | 0.1187 | 0.7222 | 0.5531 |
| 0.3697 | 6.0 | 3042 | 0.3835 | 0.5436 | 0.1187 | 0.7222 | 0.5531 |
| 0.3688 | 7.0 | 3549 | 0.4026 | 0.5436 | 0.1187 | 0.7222 | 0.5531 |
| 0.3654 | 8.0 | 4056 | 0.4771 | 0.5436 | 0.1187 | 0.7222 | 0.5531 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|