|
import argparse
|
|
import datetime
|
|
import gc
|
|
import os
|
|
import platform
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from huggingface_hub import HfApi
|
|
from torch.cuda.amp import GradScaler, autocast
|
|
from torch.nn import functional as F
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.utils.data import DataLoader
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from tqdm import tqdm
|
|
|
|
|
|
import default_style
|
|
from config import get_config
|
|
from data_utils import (
|
|
DistributedBucketSampler,
|
|
TextAudioSpeakerCollate,
|
|
TextAudioSpeakerLoader,
|
|
)
|
|
from losses import WavLMLoss, discriminator_loss, feature_loss, generator_loss, kl_loss
|
|
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
|
from style_bert_vits2.logging import logger
|
|
from style_bert_vits2.models import commons, utils
|
|
from style_bert_vits2.models.hyper_parameters import HyperParameters
|
|
from style_bert_vits2.models.models import (
|
|
DurationDiscriminator,
|
|
MultiPeriodDiscriminator,
|
|
SynthesizerTrn,
|
|
WavLMDiscriminator,
|
|
)
|
|
from style_bert_vits2.nlp.symbols import SYMBOLS
|
|
from style_bert_vits2.utils.stdout_wrapper import SAFE_STDOUT
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
torch.backends.cudnn.allow_tf32 = (
|
|
True
|
|
)
|
|
torch.set_float32_matmul_precision("medium")
|
|
torch.backends.cuda.sdp_kernel("flash")
|
|
torch.backends.cuda.enable_flash_sdp(True)
|
|
torch.backends.cuda.enable_mem_efficient_sdp(
|
|
True
|
|
)
|
|
torch.backends.cuda.enable_math_sdp(True)
|
|
|
|
config = get_config()
|
|
global_step = 0
|
|
|
|
api = HfApi()
|
|
|
|
|
|
def run():
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"-c",
|
|
"--config",
|
|
type=str,
|
|
default=config.train_ms_config.config_path,
|
|
help="JSON file for configuration",
|
|
)
|
|
parser.add_argument(
|
|
"-m",
|
|
"--model",
|
|
type=str,
|
|
help="数据集文件夹路径,请注意,数据不再默认放在/logs文件夹下。如果需要用命令行配置,请声明相对于根目录的路径",
|
|
default=config.dataset_path,
|
|
)
|
|
parser.add_argument(
|
|
"--assets_root",
|
|
type=str,
|
|
help="Root directory of model assets needed for inference.",
|
|
default=config.assets_root,
|
|
)
|
|
parser.add_argument(
|
|
"--skip_default_style",
|
|
action="store_true",
|
|
help="Skip saving default style config and mean vector.",
|
|
)
|
|
parser.add_argument(
|
|
"--no_progress_bar",
|
|
action="store_true",
|
|
help="Do not show the progress bar while training.",
|
|
)
|
|
parser.add_argument(
|
|
"--speedup",
|
|
action="store_true",
|
|
help="Speed up training by disabling logging and evaluation.",
|
|
)
|
|
parser.add_argument(
|
|
"--repo_id",
|
|
help="Huggingface model repo id to backup the model.",
|
|
default=None,
|
|
)
|
|
parser.add_argument(
|
|
"--not_use_custom_batch_sampler",
|
|
help="Don't use custom batch sampler for training, which was used in the version < 2.5",
|
|
action="store_true",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
|
|
model_dir = os.path.join(args.model, config.train_ms_config.model_dir)
|
|
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
logger.add(os.path.join(args.model, f"train_{timestamp}.log"))
|
|
|
|
|
|
envs = config.train_ms_config.env
|
|
for env_name, env_value in envs.items():
|
|
if env_name not in os.environ.keys():
|
|
logger.info(f"Loading configuration from config {env_value!s}")
|
|
os.environ[env_name] = str(env_value)
|
|
logger.info(
|
|
"Loading environment variables \nMASTER_ADDR: {},\nMASTER_PORT: {},\nWORLD_SIZE: {},\nRANK: {},\nLOCAL_RANK: {}".format(
|
|
os.environ["MASTER_ADDR"],
|
|
os.environ["MASTER_PORT"],
|
|
os.environ["WORLD_SIZE"],
|
|
os.environ["RANK"],
|
|
os.environ["LOCAL_RANK"],
|
|
)
|
|
)
|
|
|
|
backend = "nccl"
|
|
if platform.system() == "Windows":
|
|
backend = "gloo"
|
|
dist.init_process_group(
|
|
backend=backend,
|
|
init_method="env://",
|
|
timeout=datetime.timedelta(seconds=300),
|
|
)
|
|
rank = dist.get_rank()
|
|
local_rank = int(os.environ["LOCAL_RANK"])
|
|
n_gpus = dist.get_world_size()
|
|
|
|
hps = HyperParameters.load_from_json(args.config)
|
|
|
|
hps.model_dir = model_dir
|
|
hps.speedup = args.speedup
|
|
hps.repo_id = args.repo_id
|
|
|
|
|
|
if os.path.realpath(args.config) != os.path.realpath(
|
|
config.train_ms_config.config_path
|
|
):
|
|
with open(args.config, encoding="utf-8") as f:
|
|
data = f.read()
|
|
os.makedirs(os.path.dirname(config.train_ms_config.config_path), exist_ok=True)
|
|
with open(config.train_ms_config.config_path, "w", encoding="utf-8") as f:
|
|
f.write(data)
|
|
|
|
"""
|
|
Path constants are a bit complicated...
|
|
TODO: Refactor or rename these?
|
|
(Both `config.yml` and `config.json` are used, which is confusing I think.)
|
|
|
|
args.model: For saving all info needed for training.
|
|
default: `Data/{model_name}`.
|
|
hps.model_dir := model_dir: For saving checkpoints (for resuming training).
|
|
default: `Data/{model_name}/models`.
|
|
(Use `hps` since we have to pass `model_dir` to `train_and_evaluate()`.
|
|
|
|
args.assets_root: The root directory of model assets needed for inference.
|
|
default: config.assets_root == `model_assets`.
|
|
|
|
config.out_dir: The directory for model assets of this model (for inference).
|
|
default: `model_assets/{model_name}`.
|
|
"""
|
|
|
|
if args.repo_id is not None:
|
|
|
|
try:
|
|
api.upload_file(
|
|
path_or_fileobj=args.config,
|
|
path_in_repo=f"Data/{config.model_name}/config.json",
|
|
repo_id=hps.repo_id,
|
|
)
|
|
except Exception as e:
|
|
logger.error(e)
|
|
logger.error(
|
|
f"Failed to upload files to the repo {hps.repo_id}. Please check if the repo exists and you have logged in using `huggingface-cli login`."
|
|
)
|
|
raise e
|
|
|
|
api.upload_folder(
|
|
repo_id=hps.repo_id,
|
|
folder_path=config.dataset_path,
|
|
path_in_repo=f"Data/{config.model_name}",
|
|
delete_patterns="*.pth",
|
|
run_as_future=True,
|
|
)
|
|
|
|
os.makedirs(config.out_dir, exist_ok=True)
|
|
|
|
if not args.skip_default_style:
|
|
default_style.save_styles_by_dirs(
|
|
os.path.join(args.model, "wavs"),
|
|
config.out_dir,
|
|
config_path=args.config,
|
|
config_output_path=os.path.join(config.out_dir, "config.json"),
|
|
)
|
|
|
|
torch.manual_seed(hps.train.seed)
|
|
torch.cuda.set_device(local_rank)
|
|
|
|
global global_step
|
|
writer = None
|
|
writer_eval = None
|
|
if rank == 0 and not args.speedup:
|
|
|
|
|
|
utils.check_git_hash(model_dir)
|
|
writer = SummaryWriter(log_dir=model_dir)
|
|
writer_eval = SummaryWriter(log_dir=os.path.join(model_dir, "eval"))
|
|
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
|
|
collate_fn = TextAudioSpeakerCollate()
|
|
if not args.not_use_custom_batch_sampler:
|
|
train_sampler = DistributedBucketSampler(
|
|
train_dataset,
|
|
hps.train.batch_size,
|
|
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
|
|
num_replicas=n_gpus,
|
|
rank=rank,
|
|
shuffle=True,
|
|
)
|
|
train_loader = DataLoader(
|
|
train_dataset,
|
|
|
|
|
|
num_workers=1,
|
|
shuffle=False,
|
|
pin_memory=True,
|
|
collate_fn=collate_fn,
|
|
batch_sampler=train_sampler,
|
|
|
|
persistent_workers=True,
|
|
|
|
|
|
)
|
|
else:
|
|
train_loader = DataLoader(
|
|
train_dataset,
|
|
|
|
|
|
num_workers=1,
|
|
shuffle=True,
|
|
pin_memory=True,
|
|
collate_fn=collate_fn,
|
|
|
|
batch_size=hps.train.batch_size,
|
|
persistent_workers=True,
|
|
|
|
|
|
)
|
|
eval_dataset = None
|
|
eval_loader = None
|
|
if rank == 0 and not args.speedup:
|
|
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
|
|
eval_loader = DataLoader(
|
|
eval_dataset,
|
|
num_workers=0,
|
|
shuffle=False,
|
|
batch_size=1,
|
|
pin_memory=True,
|
|
drop_last=False,
|
|
collate_fn=collate_fn,
|
|
)
|
|
if hps.model.use_noise_scaled_mas is True:
|
|
logger.info("Using noise scaled MAS for VITS2")
|
|
mas_noise_scale_initial = 0.01
|
|
noise_scale_delta = 2e-6
|
|
else:
|
|
logger.info("Using normal MAS for VITS1")
|
|
mas_noise_scale_initial = 0.0
|
|
noise_scale_delta = 0.0
|
|
if hps.model.use_duration_discriminator is True:
|
|
logger.info("Using duration discriminator for VITS2")
|
|
net_dur_disc = DurationDiscriminator(
|
|
hps.model.hidden_channels,
|
|
hps.model.hidden_channels,
|
|
3,
|
|
0.1,
|
|
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
|
|
).cuda(local_rank)
|
|
|
|
else:
|
|
net_dur_disc = None
|
|
if hps.model.use_wavlm_discriminator is True:
|
|
net_wd = WavLMDiscriminator(
|
|
hps.model.slm.hidden, hps.model.slm.nlayers, hps.model.slm.initial_channel
|
|
).cuda(local_rank)
|
|
else:
|
|
net_wd = None
|
|
|
|
|
|
|
|
if hps.model.use_spk_conditioned_encoder is True:
|
|
if hps.data.n_speakers == 0:
|
|
raise ValueError(
|
|
"n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model"
|
|
)
|
|
else:
|
|
logger.info("Using normal encoder for VITS1")
|
|
|
|
net_g = SynthesizerTrn(
|
|
len(SYMBOLS),
|
|
hps.data.filter_length // 2 + 1,
|
|
hps.train.segment_size // hps.data.hop_length,
|
|
n_speakers=hps.data.n_speakers,
|
|
mas_noise_scale_initial=mas_noise_scale_initial,
|
|
noise_scale_delta=noise_scale_delta,
|
|
|
|
use_spk_conditioned_encoder=hps.model.use_spk_conditioned_encoder,
|
|
use_noise_scaled_mas=hps.model.use_noise_scaled_mas,
|
|
use_mel_posterior_encoder=hps.model.use_mel_posterior_encoder,
|
|
use_duration_discriminator=hps.model.use_duration_discriminator,
|
|
use_wavlm_discriminator=hps.model.use_wavlm_discriminator,
|
|
inter_channels=hps.model.inter_channels,
|
|
hidden_channels=hps.model.hidden_channels,
|
|
filter_channels=hps.model.filter_channels,
|
|
n_heads=hps.model.n_heads,
|
|
n_layers=hps.model.n_layers,
|
|
kernel_size=hps.model.kernel_size,
|
|
p_dropout=hps.model.p_dropout,
|
|
resblock=hps.model.resblock,
|
|
resblock_kernel_sizes=hps.model.resblock_kernel_sizes,
|
|
resblock_dilation_sizes=hps.model.resblock_dilation_sizes,
|
|
upsample_rates=hps.model.upsample_rates,
|
|
upsample_initial_channel=hps.model.upsample_initial_channel,
|
|
upsample_kernel_sizes=hps.model.upsample_kernel_sizes,
|
|
n_layers_q=hps.model.n_layers_q,
|
|
use_spectral_norm=hps.model.use_spectral_norm,
|
|
gin_channels=hps.model.gin_channels,
|
|
slm=hps.model.slm,
|
|
).cuda(local_rank)
|
|
|
|
if getattr(hps.train, "freeze_ZH_bert", False):
|
|
logger.info("Freezing ZH bert encoder !!!")
|
|
for param in net_g.enc_p.bert_proj.parameters():
|
|
param.requires_grad = False
|
|
|
|
if getattr(hps.train, "freeze_EN_bert", False):
|
|
logger.info("Freezing EN bert encoder !!!")
|
|
for param in net_g.enc_p.en_bert_proj.parameters():
|
|
param.requires_grad = False
|
|
|
|
if getattr(hps.train, "freeze_JP_bert", False):
|
|
logger.info("Freezing JP bert encoder !!!")
|
|
for param in net_g.enc_p.ja_bert_proj.parameters():
|
|
param.requires_grad = False
|
|
if getattr(hps.train, "freeze_style", False):
|
|
logger.info("Freezing style encoder !!!")
|
|
for param in net_g.enc_p.style_proj.parameters():
|
|
param.requires_grad = False
|
|
|
|
if getattr(hps.train, "freeze_decoder", False):
|
|
logger.info("Freezing decoder !!!")
|
|
for param in net_g.dec.parameters():
|
|
param.requires_grad = False
|
|
|
|
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(local_rank)
|
|
optim_g = torch.optim.AdamW(
|
|
filter(lambda p: p.requires_grad, net_g.parameters()),
|
|
hps.train.learning_rate,
|
|
betas=hps.train.betas,
|
|
eps=hps.train.eps,
|
|
)
|
|
optim_d = torch.optim.AdamW(
|
|
net_d.parameters(),
|
|
hps.train.learning_rate,
|
|
betas=hps.train.betas,
|
|
eps=hps.train.eps,
|
|
)
|
|
if net_dur_disc is not None:
|
|
optim_dur_disc = torch.optim.AdamW(
|
|
net_dur_disc.parameters(),
|
|
hps.train.learning_rate,
|
|
betas=hps.train.betas,
|
|
eps=hps.train.eps,
|
|
)
|
|
else:
|
|
optim_dur_disc = None
|
|
|
|
|
|
|
|
if net_wd is not None:
|
|
optim_wd = torch.optim.AdamW(
|
|
net_wd.parameters(),
|
|
hps.train.learning_rate,
|
|
betas=hps.train.betas,
|
|
eps=hps.train.eps,
|
|
)
|
|
else:
|
|
optim_wd = None
|
|
|
|
|
|
net_g = DDP(net_g, device_ids=[local_rank])
|
|
net_d = DDP(net_d, device_ids=[local_rank])
|
|
dur_resume_lr = None
|
|
if net_dur_disc is not None:
|
|
net_dur_disc = DDP(
|
|
net_dur_disc, device_ids=[local_rank], find_unused_parameters=True
|
|
)
|
|
|
|
if net_wd is not None:
|
|
net_wd = DDP(
|
|
net_wd,
|
|
device_ids=[local_rank],
|
|
|
|
)
|
|
|
|
|
|
|
|
if utils.is_resuming(model_dir):
|
|
if net_dur_disc is not None:
|
|
_, _, dur_resume_lr, epoch_str = utils.checkpoints.load_checkpoint(
|
|
utils.checkpoints.get_latest_checkpoint_path(model_dir, "DUR_*.pth"),
|
|
net_dur_disc,
|
|
optim_dur_disc,
|
|
skip_optimizer=hps.train.skip_optimizer,
|
|
)
|
|
if not optim_dur_disc.param_groups[0].get("initial_lr"):
|
|
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr
|
|
|
|
if net_wd is not None:
|
|
try:
|
|
_, optim_wd, wd_resume_lr, epoch_str = (
|
|
utils.checkpoints.load_checkpoint(
|
|
utils.checkpoints.get_latest_checkpoint_path(
|
|
model_dir, "WD_*.pth"
|
|
),
|
|
net_wd,
|
|
optim_wd,
|
|
skip_optimizer=hps.train.skip_optimizer,
|
|
)
|
|
)
|
|
if not optim_wd.param_groups[0].get("initial_lr"):
|
|
optim_wd.param_groups[0]["initial_lr"] = wd_resume_lr
|
|
except:
|
|
if not optim_wd.param_groups[0].get("initial_lr"):
|
|
optim_wd.param_groups[0]["initial_lr"] = wd_resume_lr
|
|
logger.info("Initialize wavlm")
|
|
|
|
|
|
_, optim_g, g_resume_lr, epoch_str = utils.checkpoints.load_checkpoint(
|
|
utils.checkpoints.get_latest_checkpoint_path(model_dir, "G_*.pth"),
|
|
net_g,
|
|
optim_g,
|
|
skip_optimizer=hps.train.skip_optimizer,
|
|
)
|
|
_, optim_d, d_resume_lr, epoch_str = utils.checkpoints.load_checkpoint(
|
|
utils.checkpoints.get_latest_checkpoint_path(model_dir, "D_*.pth"),
|
|
net_d,
|
|
optim_d,
|
|
skip_optimizer=hps.train.skip_optimizer,
|
|
)
|
|
if not optim_g.param_groups[0].get("initial_lr"):
|
|
optim_g.param_groups[0]["initial_lr"] = g_resume_lr
|
|
if not optim_d.param_groups[0].get("initial_lr"):
|
|
optim_d.param_groups[0]["initial_lr"] = d_resume_lr
|
|
|
|
epoch_str = max(epoch_str, 1)
|
|
|
|
global_step = int(
|
|
utils.get_steps(
|
|
utils.checkpoints.get_latest_checkpoint_path(model_dir, "G_*.pth")
|
|
)
|
|
)
|
|
logger.info(
|
|
f"******************Found the model. Current epoch is {epoch_str}, gloabl step is {global_step}*********************"
|
|
)
|
|
else:
|
|
try:
|
|
_ = utils.safetensors.load_safetensors(
|
|
os.path.join(model_dir, "G_0.safetensors"), net_g
|
|
)
|
|
_ = utils.safetensors.load_safetensors(
|
|
os.path.join(model_dir, "D_0.safetensors"), net_d
|
|
)
|
|
if net_dur_disc is not None:
|
|
_ = utils.safetensors.load_safetensors(
|
|
os.path.join(model_dir, "DUR_0.safetensors"), net_dur_disc
|
|
)
|
|
|
|
if net_wd is not None:
|
|
_ = utils.safetensors.load_safetensors(
|
|
os.path.join(model_dir, "WD_0.safetensors"), net_wd
|
|
)
|
|
|
|
logger.info("Loaded the pretrained models.")
|
|
except Exception as e:
|
|
logger.warning(e)
|
|
logger.warning(
|
|
"It seems that you are not using the pretrained models, so we will train from scratch."
|
|
)
|
|
finally:
|
|
epoch_str = 1
|
|
global_step = 0
|
|
|
|
def lr_lambda(epoch):
|
|
"""
|
|
Learning rate scheduler for warmup and exponential decay.
|
|
- During the warmup period, the learning rate increases linearly.
|
|
- After the warmup period, the learning rate decreases exponentially.
|
|
"""
|
|
if epoch < hps.train.warmup_epochs:
|
|
return float(epoch) / float(max(1, hps.train.warmup_epochs))
|
|
else:
|
|
return hps.train.lr_decay ** (epoch - hps.train.warmup_epochs)
|
|
|
|
scheduler_last_epoch = epoch_str - 2
|
|
scheduler_g = torch.optim.lr_scheduler.LambdaLR(
|
|
optim_g, lr_lambda=lr_lambda, last_epoch=scheduler_last_epoch
|
|
)
|
|
scheduler_d = torch.optim.lr_scheduler.LambdaLR(
|
|
optim_d, lr_lambda=lr_lambda, last_epoch=scheduler_last_epoch
|
|
)
|
|
if net_dur_disc is not None:
|
|
scheduler_dur_disc = torch.optim.lr_scheduler.LambdaLR(
|
|
optim_dur_disc, lr_lambda=lr_lambda, last_epoch=scheduler_last_epoch
|
|
)
|
|
else:
|
|
scheduler_dur_disc = None
|
|
|
|
|
|
if net_wd is not None:
|
|
scheduler_wd = torch.optim.lr_scheduler.LambdaLR(
|
|
optim_wd, lr_lambda=lr_lambda, last_epoch=scheduler_last_epoch
|
|
)
|
|
wl = WavLMLoss(
|
|
hps.model.slm.model,
|
|
net_wd,
|
|
hps.data.sampling_rate,
|
|
hps.model.slm.sr,
|
|
).to(local_rank)
|
|
else:
|
|
scheduler_wd = None
|
|
wl = None
|
|
|
|
|
|
|
|
scaler = GradScaler(enabled=hps.train.bf16_run)
|
|
logger.info("Start training.")
|
|
|
|
diff = abs(
|
|
epoch_str * len(train_loader) - (hps.train.epochs + 1) * len(train_loader)
|
|
)
|
|
pbar = None
|
|
if not args.no_progress_bar:
|
|
pbar = tqdm(
|
|
total=global_step + diff,
|
|
initial=global_step,
|
|
smoothing=0.05,
|
|
file=SAFE_STDOUT,
|
|
)
|
|
initial_step = global_step
|
|
|
|
for epoch in range(epoch_str, hps.train.epochs + 1):
|
|
if rank == 0:
|
|
train_and_evaluate(
|
|
rank,
|
|
local_rank,
|
|
epoch,
|
|
hps,
|
|
[net_g, net_d, net_dur_disc, net_wd, wl],
|
|
[optim_g, optim_d, optim_dur_disc, optim_wd],
|
|
[scheduler_g, scheduler_d, scheduler_dur_disc, scheduler_wd],
|
|
scaler,
|
|
[train_loader, eval_loader],
|
|
logger,
|
|
[writer, writer_eval],
|
|
pbar,
|
|
initial_step,
|
|
)
|
|
else:
|
|
train_and_evaluate(
|
|
rank,
|
|
local_rank,
|
|
epoch,
|
|
hps,
|
|
[net_g, net_d, net_dur_disc, net_wd, wl],
|
|
[optim_g, optim_d, optim_dur_disc, optim_wd],
|
|
[scheduler_g, scheduler_d, scheduler_dur_disc, scheduler_wd],
|
|
scaler,
|
|
[train_loader, None],
|
|
None,
|
|
None,
|
|
pbar,
|
|
initial_step,
|
|
)
|
|
scheduler_g.step()
|
|
scheduler_d.step()
|
|
if net_dur_disc is not None:
|
|
scheduler_dur_disc.step()
|
|
if net_wd is not None:
|
|
scheduler_wd.step()
|
|
if epoch == hps.train.epochs:
|
|
|
|
assert optim_g is not None
|
|
utils.checkpoints.save_checkpoint(
|
|
net_g,
|
|
optim_g,
|
|
hps.train.learning_rate,
|
|
epoch,
|
|
os.path.join(model_dir, f"G_{global_step}.pth"),
|
|
)
|
|
assert optim_d is not None
|
|
utils.checkpoints.save_checkpoint(
|
|
net_d,
|
|
optim_d,
|
|
hps.train.learning_rate,
|
|
epoch,
|
|
os.path.join(model_dir, f"D_{global_step}.pth"),
|
|
)
|
|
if net_dur_disc is not None:
|
|
assert optim_dur_disc is not None
|
|
utils.checkpoints.save_checkpoint(
|
|
net_dur_disc,
|
|
optim_dur_disc,
|
|
hps.train.learning_rate,
|
|
epoch,
|
|
os.path.join(model_dir, f"DUR_{global_step}.pth"),
|
|
)
|
|
|
|
|
|
if net_wd is not None:
|
|
assert optim_wd is not None
|
|
utils.checkpoints.save_checkpoint(
|
|
net_wd,
|
|
optim_wd,
|
|
hps.train.learning_rate,
|
|
epoch,
|
|
os.path.join(model_dir, f"WD_{global_step}.pth"),
|
|
)
|
|
|
|
|
|
utils.safetensors.save_safetensors(
|
|
net_g,
|
|
epoch,
|
|
os.path.join(
|
|
config.out_dir,
|
|
f"{config.model_name}_e{epoch}_s{global_step}.safetensors",
|
|
),
|
|
for_infer=True,
|
|
)
|
|
if hps.repo_id is not None:
|
|
future1 = api.upload_folder(
|
|
repo_id=hps.repo_id,
|
|
folder_path=config.dataset_path,
|
|
path_in_repo=f"Data/{config.model_name}",
|
|
delete_patterns="*.pth",
|
|
run_as_future=True,
|
|
)
|
|
future2 = api.upload_folder(
|
|
repo_id=hps.repo_id,
|
|
folder_path=config.out_dir,
|
|
path_in_repo=f"model_assets/{config.model_name}",
|
|
run_as_future=True,
|
|
)
|
|
try:
|
|
future1.result()
|
|
future2.result()
|
|
except Exception as e:
|
|
logger.error(e)
|
|
|
|
if pbar is not None:
|
|
pbar.close()
|
|
|
|
|
|
def train_and_evaluate(
|
|
rank,
|
|
local_rank,
|
|
epoch,
|
|
hps: HyperParameters,
|
|
nets,
|
|
optims,
|
|
schedulers,
|
|
scaler,
|
|
loaders,
|
|
logger,
|
|
writers,
|
|
pbar: tqdm,
|
|
initial_step: int,
|
|
):
|
|
net_g, net_d, net_dur_disc, net_wd, wl = nets
|
|
optim_g, optim_d, optim_dur_disc, optim_wd = optims
|
|
scheduler_g, scheduler_d, scheduler_dur_disc, scheduler_wd = schedulers
|
|
train_loader, eval_loader = loaders
|
|
if writers is not None:
|
|
writer, writer_eval = writers
|
|
|
|
train_loader.batch_sampler.set_epoch(epoch)
|
|
global global_step
|
|
|
|
net_g.train()
|
|
net_d.train()
|
|
if net_dur_disc is not None:
|
|
net_dur_disc.train()
|
|
if net_wd is not None:
|
|
net_wd.train()
|
|
for batch_idx, (
|
|
x,
|
|
x_lengths,
|
|
spec,
|
|
spec_lengths,
|
|
y,
|
|
y_lengths,
|
|
speakers,
|
|
tone,
|
|
language,
|
|
bert,
|
|
ja_bert,
|
|
en_bert,
|
|
style_vec,
|
|
) in enumerate(train_loader):
|
|
if net_g.module.use_noise_scaled_mas:
|
|
current_mas_noise_scale = (
|
|
net_g.module.mas_noise_scale_initial
|
|
- net_g.module.noise_scale_delta * global_step
|
|
)
|
|
net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
|
|
x, x_lengths = x.cuda(local_rank, non_blocking=True), x_lengths.cuda(
|
|
local_rank, non_blocking=True
|
|
)
|
|
spec, spec_lengths = spec.cuda(
|
|
local_rank, non_blocking=True
|
|
), spec_lengths.cuda(local_rank, non_blocking=True)
|
|
y, y_lengths = y.cuda(local_rank, non_blocking=True), y_lengths.cuda(
|
|
local_rank, non_blocking=True
|
|
)
|
|
speakers = speakers.cuda(local_rank, non_blocking=True)
|
|
tone = tone.cuda(local_rank, non_blocking=True)
|
|
language = language.cuda(local_rank, non_blocking=True)
|
|
bert = bert.cuda(local_rank, non_blocking=True)
|
|
ja_bert = ja_bert.cuda(local_rank, non_blocking=True)
|
|
en_bert = en_bert.cuda(local_rank, non_blocking=True)
|
|
style_vec = style_vec.cuda(local_rank, non_blocking=True)
|
|
|
|
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
|
|
(
|
|
y_hat,
|
|
l_length,
|
|
attn,
|
|
ids_slice,
|
|
x_mask,
|
|
z_mask,
|
|
(z, z_p, m_p, logs_p, m_q, logs_q),
|
|
(hidden_x, logw, logw_),
|
|
g,
|
|
) = net_g(
|
|
x,
|
|
x_lengths,
|
|
spec,
|
|
spec_lengths,
|
|
speakers,
|
|
tone,
|
|
language,
|
|
bert,
|
|
ja_bert,
|
|
en_bert,
|
|
style_vec,
|
|
)
|
|
mel = spec_to_mel_torch(
|
|
spec,
|
|
hps.data.filter_length,
|
|
hps.data.n_mel_channels,
|
|
hps.data.sampling_rate,
|
|
hps.data.mel_fmin,
|
|
hps.data.mel_fmax,
|
|
)
|
|
y_mel = commons.slice_segments(
|
|
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
|
|
)
|
|
y_hat_mel = mel_spectrogram_torch(
|
|
y_hat.squeeze(1).float(),
|
|
hps.data.filter_length,
|
|
hps.data.n_mel_channels,
|
|
hps.data.sampling_rate,
|
|
hps.data.hop_length,
|
|
hps.data.win_length,
|
|
hps.data.mel_fmin,
|
|
hps.data.mel_fmax,
|
|
)
|
|
|
|
y = commons.slice_segments(
|
|
y, ids_slice * hps.data.hop_length, hps.train.segment_size
|
|
)
|
|
|
|
|
|
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
|
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
|
|
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
|
y_d_hat_r, y_d_hat_g
|
|
)
|
|
loss_disc_all = loss_disc
|
|
if net_dur_disc is not None:
|
|
y_dur_hat_r, y_dur_hat_g = net_dur_disc(
|
|
hidden_x.detach(), x_mask.detach(), logw.detach(), logw_.detach()
|
|
)
|
|
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
|
|
|
|
(
|
|
loss_dur_disc,
|
|
losses_dur_disc_r,
|
|
losses_dur_disc_g,
|
|
) = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
|
|
loss_dur_disc_all = loss_dur_disc
|
|
optim_dur_disc.zero_grad()
|
|
scaler.scale(loss_dur_disc_all).backward()
|
|
scaler.unscale_(optim_dur_disc)
|
|
commons.clip_grad_value_(net_dur_disc.parameters(), None)
|
|
scaler.step(optim_dur_disc)
|
|
|
|
|
|
if net_wd is not None:
|
|
|
|
|
|
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
|
|
loss_slm = wl.discriminator(
|
|
y.detach().squeeze(1), y_hat.detach().squeeze(1)
|
|
).mean()
|
|
optim_wd.zero_grad()
|
|
scaler.scale(loss_slm).backward()
|
|
scaler.unscale_(optim_wd)
|
|
|
|
grad_norm_wd = commons.clip_grad_value_(net_wd.parameters(), None)
|
|
scaler.step(optim_wd)
|
|
|
|
|
|
|
|
optim_d.zero_grad()
|
|
scaler.scale(loss_disc_all).backward()
|
|
scaler.unscale_(optim_d)
|
|
if getattr(hps.train, "bf16_run", False):
|
|
torch.nn.utils.clip_grad_norm_(parameters=net_d.parameters(), max_norm=200)
|
|
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
|
scaler.step(optim_d)
|
|
|
|
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
|
|
|
|
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
|
if net_dur_disc is not None:
|
|
y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw, logw_)
|
|
if net_wd is not None:
|
|
loss_lm = wl(y.detach().squeeze(1), y_hat.squeeze(1)).mean()
|
|
loss_lm_gen = wl.generator(y_hat.squeeze(1))
|
|
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
|
|
loss_dur = torch.sum(l_length.float())
|
|
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
|
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
|
|
|
loss_fm = feature_loss(fmap_r, fmap_g)
|
|
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
|
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
|
|
if net_dur_disc is not None:
|
|
loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
|
|
|
|
if net_wd is not None:
|
|
loss_gen_all += loss_dur_gen + loss_lm + loss_lm_gen
|
|
|
|
|
|
loss_gen_all += loss_dur_gen
|
|
optim_g.zero_grad()
|
|
scaler.scale(loss_gen_all).backward()
|
|
scaler.unscale_(optim_g)
|
|
if getattr(hps.train, "bf16_run", False):
|
|
torch.nn.utils.clip_grad_norm_(parameters=net_g.parameters(), max_norm=500)
|
|
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
|
scaler.step(optim_g)
|
|
scaler.update()
|
|
|
|
if rank == 0:
|
|
if global_step % hps.train.log_interval == 0 and not hps.speedup:
|
|
lr = optim_g.param_groups[0]["lr"]
|
|
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scalar_dict = {
|
|
"loss/g/total": loss_gen_all,
|
|
"loss/d/total": loss_disc_all,
|
|
"learning_rate": lr,
|
|
"grad_norm_d": grad_norm_d,
|
|
"grad_norm_g": grad_norm_g,
|
|
}
|
|
scalar_dict.update(
|
|
{
|
|
"loss/g/fm": loss_fm,
|
|
"loss/g/mel": loss_mel,
|
|
"loss/g/dur": loss_dur,
|
|
"loss/g/kl": loss_kl,
|
|
}
|
|
)
|
|
scalar_dict.update({f"loss/g/{i}": v for i, v in enumerate(losses_gen)})
|
|
scalar_dict.update(
|
|
{f"loss/d_r/{i}": v for i, v in enumerate(losses_disc_r)}
|
|
)
|
|
scalar_dict.update(
|
|
{f"loss/d_g/{i}": v for i, v in enumerate(losses_disc_g)}
|
|
)
|
|
|
|
if net_wd is not None:
|
|
scalar_dict.update(
|
|
{
|
|
"loss/wd/total": loss_slm,
|
|
"grad_norm_wd": grad_norm_wd,
|
|
"loss/g/lm": loss_lm,
|
|
"loss/g/lm_gen": loss_lm_gen,
|
|
}
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils.summarize(
|
|
writer=writer,
|
|
global_step=global_step,
|
|
|
|
scalars=scalar_dict,
|
|
)
|
|
|
|
if (
|
|
global_step % hps.train.eval_interval == 0
|
|
and global_step != 0
|
|
and initial_step != global_step
|
|
):
|
|
if not hps.speedup:
|
|
evaluate(hps, net_g, eval_loader, writer_eval)
|
|
assert hps.model_dir is not None
|
|
utils.checkpoints.save_checkpoint(
|
|
net_g,
|
|
optim_g,
|
|
hps.train.learning_rate,
|
|
epoch,
|
|
os.path.join(hps.model_dir, f"G_{global_step}.pth"),
|
|
)
|
|
utils.checkpoints.save_checkpoint(
|
|
net_d,
|
|
optim_d,
|
|
hps.train.learning_rate,
|
|
epoch,
|
|
os.path.join(hps.model_dir, f"D_{global_step}.pth"),
|
|
)
|
|
if net_dur_disc is not None:
|
|
utils.checkpoints.save_checkpoint(
|
|
net_dur_disc,
|
|
optim_dur_disc,
|
|
hps.train.learning_rate,
|
|
epoch,
|
|
os.path.join(hps.model_dir, f"DUR_{global_step}.pth"),
|
|
)
|
|
if net_wd is not None:
|
|
utils.checkpoints.save_checkpoint(
|
|
net_wd,
|
|
optim_wd,
|
|
hps.train.learning_rate,
|
|
epoch,
|
|
os.path.join(hps.model_dir, f"WD_{global_step}.pth"),
|
|
)
|
|
keep_ckpts = config.train_ms_config.keep_ckpts
|
|
if keep_ckpts > 0:
|
|
utils.checkpoints.clean_checkpoints(
|
|
model_dir_path=hps.model_dir,
|
|
n_ckpts_to_keep=keep_ckpts,
|
|
sort_by_time=True,
|
|
)
|
|
|
|
utils.safetensors.save_safetensors(
|
|
net_g,
|
|
epoch,
|
|
os.path.join(
|
|
config.out_dir,
|
|
f"{config.model_name}_e{epoch}_s{global_step}.safetensors",
|
|
),
|
|
for_infer=True,
|
|
)
|
|
if hps.repo_id is not None:
|
|
api.upload_folder(
|
|
repo_id=hps.repo_id,
|
|
folder_path=config.dataset_path,
|
|
path_in_repo=f"Data/{config.model_name}",
|
|
delete_patterns="*.pth",
|
|
run_as_future=True,
|
|
)
|
|
api.upload_folder(
|
|
repo_id=hps.repo_id,
|
|
folder_path=config.out_dir,
|
|
path_in_repo=f"model_assets/{config.model_name}",
|
|
run_as_future=True,
|
|
)
|
|
|
|
global_step += 1
|
|
if pbar is not None:
|
|
pbar.set_description(
|
|
f"Epoch {epoch}({100.0 * batch_idx / len(train_loader):.0f}%)/{hps.train.epochs}"
|
|
)
|
|
pbar.update()
|
|
|
|
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
if pbar is None and rank == 0:
|
|
logger.info(f"====> Epoch: {epoch}, step: {global_step}")
|
|
|
|
|
|
def evaluate(hps, generator, eval_loader, writer_eval):
|
|
generator.eval()
|
|
image_dict = {}
|
|
audio_dict = {}
|
|
print()
|
|
logger.info("Evaluating ...")
|
|
with torch.no_grad():
|
|
for batch_idx, (
|
|
x,
|
|
x_lengths,
|
|
spec,
|
|
spec_lengths,
|
|
y,
|
|
y_lengths,
|
|
speakers,
|
|
tone,
|
|
language,
|
|
bert,
|
|
ja_bert,
|
|
en_bert,
|
|
style_vec,
|
|
) in enumerate(eval_loader):
|
|
x, x_lengths = x.cuda(), x_lengths.cuda()
|
|
spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
|
|
y, y_lengths = y.cuda(), y_lengths.cuda()
|
|
speakers = speakers.cuda()
|
|
bert = bert.cuda()
|
|
ja_bert = ja_bert.cuda()
|
|
en_bert = en_bert.cuda()
|
|
tone = tone.cuda()
|
|
language = language.cuda()
|
|
style_vec = style_vec.cuda()
|
|
for use_sdp in [True, False]:
|
|
y_hat, attn, mask, *_ = generator.module.infer(
|
|
x,
|
|
x_lengths,
|
|
speakers,
|
|
tone,
|
|
language,
|
|
bert,
|
|
ja_bert,
|
|
en_bert,
|
|
style_vec,
|
|
y=spec,
|
|
max_len=1000,
|
|
sdp_ratio=0.0 if not use_sdp else 1.0,
|
|
)
|
|
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
audio_dict.update(
|
|
{
|
|
f"gen/audio_{batch_idx}_{use_sdp}": y_hat[
|
|
0, :, : y_hat_lengths[0]
|
|
]
|
|
}
|
|
)
|
|
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]})
|
|
|
|
utils.summarize(
|
|
writer=writer_eval,
|
|
global_step=global_step,
|
|
images=image_dict,
|
|
audios=audio_dict,
|
|
audio_sampling_rate=hps.data.sampling_rate,
|
|
)
|
|
generator.train()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run()
|
|
|