|
import os
|
|
import shutil
|
|
import sys
|
|
import json
|
|
import math
|
|
|
|
import signal
|
|
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
import traceback, pdb
|
|
import warnings
|
|
|
|
import numpy as np
|
|
import torch
|
|
import re
|
|
os.environ["OPENBLAS_NUM_THREADS"] = "1"
|
|
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
|
|
import logging
|
|
import threading
|
|
from random import shuffle
|
|
from subprocess import Popen
|
|
from time import sleep
|
|
|
|
import faiss
|
|
import ffmpeg
|
|
import gradio as gr
|
|
import soundfile as sf
|
|
from config import Config
|
|
from fairseq import checkpoint_utils
|
|
from i18n import I18nAuto
|
|
from lib.infer_pack.models import (
|
|
SynthesizerTrnMs256NSFsid,
|
|
SynthesizerTrnMs256NSFsid_nono,
|
|
SynthesizerTrnMs768NSFsid,
|
|
SynthesizerTrnMs768NSFsid_nono,
|
|
)
|
|
from lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
|
|
from infer_uvr5 import _audio_pre_, _audio_pre_new
|
|
from MDXNet import MDXNetDereverb
|
|
from my_utils import load_audio
|
|
from train.process_ckpt import change_info, extract_small_model, merge, show_info
|
|
from vc_infer_pipeline import VC
|
|
from sklearn.cluster import MiniBatchKMeans
|
|
|
|
tmp = os.path.join(now_dir, "TEMP")
|
|
shutil.rmtree(tmp, ignore_errors=True)
|
|
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
|
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
|
|
os.makedirs(tmp, exist_ok=True)
|
|
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
|
os.makedirs(os.path.join(now_dir, "audios"), exist_ok=True)
|
|
os.makedirs(os.path.join(now_dir, "datasets"), exist_ok=True)
|
|
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
|
|
os.environ["TEMP"] = tmp
|
|
warnings.filterwarnings("ignore")
|
|
torch.manual_seed(114514)
|
|
|
|
import sqlite3
|
|
|
|
def clear_sql(signal, frame):
|
|
cursor.execute("DELETE FROM formant_data")
|
|
cursor.execute("DELETE FROM stop_train")
|
|
conn.commit()
|
|
conn.close()
|
|
print("Clearing SQL database...")
|
|
sys.exit(0)
|
|
|
|
if sys.platform == 'win32':
|
|
signal.signal(signal.SIGBREAK, clear_sql)
|
|
|
|
signal.signal(signal.SIGINT, clear_sql)
|
|
signal.signal(signal.SIGTERM, clear_sql)
|
|
|
|
|
|
|
|
logging.getLogger("numba").setLevel(logging.WARNING)
|
|
|
|
conn = sqlite3.connect('TEMP/db:cachedb?mode=memory&cache=shared', check_same_thread=False)
|
|
cursor = conn.cursor()
|
|
|
|
|
|
|
|
cursor.execute("""
|
|
CREATE TABLE IF NOT EXISTS formant_data (
|
|
Quefrency FLOAT,
|
|
Timbre FLOAT,
|
|
DoFormant INTEGER
|
|
)
|
|
""")
|
|
|
|
cursor.execute("""
|
|
CREATE TABLE IF NOT EXISTS stop_train (
|
|
stop BOOL
|
|
)
|
|
""")
|
|
|
|
global DoFormant, Quefrency, Timbre
|
|
|
|
try:
|
|
cursor.execute("SELECT Quefrency, Timbre, DoFormant FROM formant_data")
|
|
row = cursor.fetchone()
|
|
if row is not None:
|
|
Quefrency, Timbre, DoFormant = row
|
|
else:
|
|
raise ValueError("No data")
|
|
|
|
except (ValueError, TypeError):
|
|
Quefrency = 8.0
|
|
Timbre = 1.2
|
|
DoFormant = False
|
|
cursor.execute("DELETE FROM formant_data")
|
|
cursor.execute("DELETE FROM stop_train")
|
|
cursor.execute("INSERT INTO formant_data (Quefrency, Timbre, DoFormant) VALUES (?, ?, ?)", (Quefrency, Timbre, 0))
|
|
conn.commit()
|
|
|
|
config = Config()
|
|
i18n = I18nAuto()
|
|
i18n.print()
|
|
|
|
ngpu = torch.cuda.device_count()
|
|
gpu_infos = []
|
|
mem = []
|
|
if_gpu_ok = False
|
|
|
|
isinterrupted = 0
|
|
|
|
if torch.cuda.is_available() or ngpu != 0:
|
|
for i in range(ngpu):
|
|
gpu_name = torch.cuda.get_device_name(i)
|
|
if any(
|
|
value in gpu_name.upper()
|
|
for value in [
|
|
"10",
|
|
"16",
|
|
"20",
|
|
"30",
|
|
"40",
|
|
"A2",
|
|
"A3",
|
|
"A4",
|
|
"P4",
|
|
"A50",
|
|
"500",
|
|
"A60",
|
|
"70",
|
|
"80",
|
|
"90",
|
|
"M4",
|
|
"T4",
|
|
"TITAN",
|
|
]
|
|
):
|
|
|
|
if_gpu_ok = True
|
|
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
|
mem.append(
|
|
int(
|
|
torch.cuda.get_device_properties(i).total_memory
|
|
/ 1024
|
|
/ 1024
|
|
/ 1024
|
|
+ 0.4
|
|
)
|
|
)
|
|
if if_gpu_ok and len(gpu_infos) > 0:
|
|
gpu_info = "\n".join(gpu_infos)
|
|
default_batch_size = min(mem) // 2
|
|
else:
|
|
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
|
default_batch_size = 1
|
|
gpus = "-".join([i[0] for i in gpu_infos])
|
|
|
|
hubert_model = None
|
|
|
|
|
|
|
|
def load_hubert():
|
|
global hubert_model
|
|
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
|
["hubert_base.pt"],
|
|
suffix="",
|
|
)
|
|
hubert_model = models[0]
|
|
hubert_model = hubert_model.to(config.device)
|
|
if config.is_half:
|
|
hubert_model = hubert_model.half()
|
|
else:
|
|
hubert_model = hubert_model.float()
|
|
hubert_model.eval()
|
|
|
|
|
|
weight_root = "weights"
|
|
weight_uvr5_root = "uvr5_weights"
|
|
index_root = "./logs/"
|
|
audio_root = "audios"
|
|
names = []
|
|
for name in os.listdir(weight_root):
|
|
if name.endswith(".pth"):
|
|
names.append(name)
|
|
index_paths = []
|
|
|
|
global indexes_list
|
|
indexes_list=[]
|
|
|
|
audio_paths = []
|
|
for root, dirs, files in os.walk(index_root, topdown=False):
|
|
for name in files:
|
|
if name.endswith(".index") and "trained" not in name:
|
|
index_paths.append("%s\\%s" % (root, name))
|
|
|
|
for root, dirs, files in os.walk(audio_root, topdown=False):
|
|
for name in files:
|
|
|
|
audio_paths.append("%s/%s" % (root, name))
|
|
|
|
uvr5_names = []
|
|
for name in os.listdir(weight_uvr5_root):
|
|
if name.endswith(".pth") or "onnx" in name:
|
|
uvr5_names.append(name.replace(".pth", ""))
|
|
|
|
def check_for_name():
|
|
if len(names) > 0:
|
|
return sorted(names)[0]
|
|
else:
|
|
return ''
|
|
|
|
def get_index():
|
|
if check_for_name() != '':
|
|
chosen_model=sorted(names)[0].split(".")[0]
|
|
logs_path="./logs/"+chosen_model
|
|
if os.path.exists(logs_path):
|
|
for file in os.listdir(logs_path):
|
|
if file.endswith(".index"):
|
|
return os.path.join(logs_path, file).replace('\\','/')
|
|
return ''
|
|
else:
|
|
return ''
|
|
|
|
def get_indexes():
|
|
for dirpath, dirnames, filenames in os.walk("./logs/"):
|
|
for filename in filenames:
|
|
if filename.endswith(".index") and "trained" not in filename:
|
|
indexes_list.append(os.path.join(dirpath,filename).replace('\\','/'))
|
|
if len(indexes_list) > 0:
|
|
return indexes_list
|
|
else:
|
|
return ''
|
|
|
|
fshift_presets_list = []
|
|
|
|
def get_fshift_presets():
|
|
fshift_presets_list = []
|
|
for dirpath, dirnames, filenames in os.walk("./formantshiftcfg/"):
|
|
for filename in filenames:
|
|
if filename.endswith(".txt"):
|
|
fshift_presets_list.append(os.path.join(dirpath,filename).replace('\\','/'))
|
|
|
|
if len(fshift_presets_list) > 0:
|
|
return fshift_presets_list
|
|
else:
|
|
return ''
|
|
|
|
|
|
|
|
def vc_single(
|
|
sid,
|
|
input_audio_path0,
|
|
input_audio_path1,
|
|
f0_up_key,
|
|
f0_file,
|
|
f0_method,
|
|
file_index,
|
|
file_index2,
|
|
|
|
index_rate,
|
|
filter_radius,
|
|
resample_sr,
|
|
rms_mix_rate,
|
|
protect,
|
|
crepe_hop_length,
|
|
):
|
|
global tgt_sr, net_g, vc, hubert_model, version
|
|
if input_audio_path0 is None or input_audio_path0 is None:
|
|
return "You need to upload an audio", None
|
|
f0_up_key = int(f0_up_key)
|
|
try:
|
|
if input_audio_path0 == '':
|
|
audio = load_audio(input_audio_path1, 16000, DoFormant, Quefrency, Timbre)
|
|
|
|
else:
|
|
audio = load_audio(input_audio_path0, 16000, DoFormant, Quefrency, Timbre)
|
|
|
|
audio_max = np.abs(audio).max() / 0.95
|
|
if audio_max > 1:
|
|
audio /= audio_max
|
|
times = [0, 0, 0]
|
|
if not hubert_model:
|
|
load_hubert()
|
|
if_f0 = cpt.get("f0", 1)
|
|
file_index = (
|
|
(
|
|
file_index.strip(" ")
|
|
.strip('"')
|
|
.strip("\n")
|
|
.strip('"')
|
|
.strip(" ")
|
|
.replace("trained", "added")
|
|
)
|
|
if file_index != ""
|
|
else file_index2
|
|
)
|
|
|
|
|
|
|
|
audio_opt = vc.pipeline(
|
|
hubert_model,
|
|
net_g,
|
|
sid,
|
|
audio,
|
|
input_audio_path1,
|
|
times,
|
|
f0_up_key,
|
|
f0_method,
|
|
file_index,
|
|
|
|
index_rate,
|
|
if_f0,
|
|
filter_radius,
|
|
tgt_sr,
|
|
resample_sr,
|
|
rms_mix_rate,
|
|
version,
|
|
protect,
|
|
crepe_hop_length,
|
|
f0_file=f0_file,
|
|
)
|
|
if tgt_sr != resample_sr >= 16000:
|
|
tgt_sr = resample_sr
|
|
index_info = (
|
|
"Using index:%s." % file_index
|
|
if os.path.exists(file_index)
|
|
else "Index not used."
|
|
)
|
|
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
|
|
index_info,
|
|
times[0],
|
|
times[1],
|
|
times[2],
|
|
), (tgt_sr, audio_opt)
|
|
except:
|
|
info = traceback.format_exc()
|
|
print(info)
|
|
return info, (None, None)
|
|
|
|
|
|
def vc_multi(
|
|
sid,
|
|
dir_path,
|
|
opt_root,
|
|
paths,
|
|
f0_up_key,
|
|
f0_method,
|
|
file_index,
|
|
file_index2,
|
|
|
|
index_rate,
|
|
filter_radius,
|
|
resample_sr,
|
|
rms_mix_rate,
|
|
protect,
|
|
format1,
|
|
crepe_hop_length,
|
|
):
|
|
try:
|
|
dir_path = (
|
|
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
)
|
|
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
os.makedirs(opt_root, exist_ok=True)
|
|
try:
|
|
if dir_path != "":
|
|
paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)]
|
|
else:
|
|
paths = [path.name for path in paths]
|
|
except:
|
|
traceback.print_exc()
|
|
paths = [path.name for path in paths]
|
|
infos = []
|
|
for path in paths:
|
|
info, opt = vc_single(
|
|
sid,
|
|
path,
|
|
None,
|
|
f0_up_key,
|
|
None,
|
|
f0_method,
|
|
file_index,
|
|
file_index2,
|
|
|
|
index_rate,
|
|
filter_radius,
|
|
resample_sr,
|
|
rms_mix_rate,
|
|
protect,
|
|
crepe_hop_length
|
|
)
|
|
if "Success" in info:
|
|
try:
|
|
tgt_sr, audio_opt = opt
|
|
if format1 in ["wav", "flac", "mp3", "ogg", "aac"]:
|
|
sf.write(
|
|
"%s/%s.%s" % (opt_root, os.path.basename(path), format1),
|
|
audio_opt,
|
|
tgt_sr,
|
|
)
|
|
else:
|
|
path = "%s/%s.wav" % (opt_root, os.path.basename(path))
|
|
sf.write(
|
|
path,
|
|
audio_opt,
|
|
tgt_sr,
|
|
)
|
|
if os.path.exists(path):
|
|
os.system(
|
|
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
|
% (path, path[:-4] + ".%s" % format1)
|
|
)
|
|
except:
|
|
info += traceback.format_exc()
|
|
infos.append("%s->%s" % (os.path.basename(path), info))
|
|
yield "\n".join(infos)
|
|
yield "\n".join(infos)
|
|
except:
|
|
yield traceback.format_exc()
|
|
|
|
|
|
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0):
|
|
infos = []
|
|
try:
|
|
inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
save_root_vocal = (
|
|
save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
)
|
|
save_root_ins = (
|
|
save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
)
|
|
if model_name == "onnx_dereverb_By_FoxJoy":
|
|
pre_fun = MDXNetDereverb(15)
|
|
else:
|
|
func = _audio_pre_ if "DeEcho" not in model_name else _audio_pre_new
|
|
pre_fun = func(
|
|
agg=int(agg),
|
|
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"),
|
|
device=config.device,
|
|
is_half=config.is_half,
|
|
)
|
|
if inp_root != "":
|
|
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)]
|
|
else:
|
|
paths = [path.name for path in paths]
|
|
for path in paths:
|
|
inp_path = os.path.join(inp_root, path)
|
|
need_reformat = 1
|
|
done = 0
|
|
try:
|
|
info = ffmpeg.probe(inp_path, cmd="ffprobe")
|
|
if (
|
|
info["streams"][0]["channels"] == 2
|
|
and info["streams"][0]["sample_rate"] == "44100"
|
|
):
|
|
need_reformat = 0
|
|
pre_fun._path_audio_(
|
|
inp_path, save_root_ins, save_root_vocal, format0
|
|
)
|
|
done = 1
|
|
except:
|
|
need_reformat = 1
|
|
traceback.print_exc()
|
|
if need_reformat == 1:
|
|
tmp_path = "%s/%s.reformatted.wav" % (tmp, os.path.basename(inp_path))
|
|
os.system(
|
|
"ffmpeg -i %s -vn -acodec pcm_s16le -ac 2 -ar 44100 %s -y"
|
|
% (inp_path, tmp_path)
|
|
)
|
|
inp_path = tmp_path
|
|
try:
|
|
if done == 0:
|
|
pre_fun._path_audio_(
|
|
inp_path, save_root_ins, save_root_vocal, format0
|
|
)
|
|
infos.append("%s->Success" % (os.path.basename(inp_path)))
|
|
yield "\n".join(infos)
|
|
except:
|
|
infos.append(
|
|
"%s->%s" % (os.path.basename(inp_path), traceback.format_exc())
|
|
)
|
|
yield "\n".join(infos)
|
|
except:
|
|
infos.append(traceback.format_exc())
|
|
yield "\n".join(infos)
|
|
finally:
|
|
try:
|
|
if model_name == "onnx_dereverb_By_FoxJoy":
|
|
del pre_fun.pred.model
|
|
del pre_fun.pred.model_
|
|
else:
|
|
del pre_fun.model
|
|
del pre_fun
|
|
except:
|
|
traceback.print_exc()
|
|
print("clean_empty_cache")
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
yield "\n".join(infos)
|
|
|
|
|
|
|
|
def get_vc(sid, to_return_protect0, to_return_protect1):
|
|
global n_spk, tgt_sr, net_g, vc, cpt, version
|
|
if sid == "" or sid == []:
|
|
global hubert_model
|
|
if hubert_model is not None:
|
|
print("clean_empty_cache")
|
|
del net_g, n_spk, vc, hubert_model, tgt_sr
|
|
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
|
|
if_f0 = cpt.get("f0", 1)
|
|
version = cpt.get("version", "v1")
|
|
if version == "v1":
|
|
if if_f0 == 1:
|
|
net_g = SynthesizerTrnMs256NSFsid(
|
|
*cpt["config"], is_half=config.is_half
|
|
)
|
|
else:
|
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
|
elif version == "v2":
|
|
if if_f0 == 1:
|
|
net_g = SynthesizerTrnMs768NSFsid(
|
|
*cpt["config"], is_half=config.is_half
|
|
)
|
|
else:
|
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
|
del net_g, cpt
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
cpt = None
|
|
return ({"visible": False, "__type__": "update"}, {"visible": False, "__type__": "update"}, {"visible": False, "__type__": "update"})
|
|
person = "%s/%s" % (weight_root, sid)
|
|
print("loading %s" % person)
|
|
cpt = torch.load(person, map_location="cpu")
|
|
tgt_sr = cpt["config"][-1]
|
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
|
if_f0 = cpt.get("f0", 1)
|
|
if if_f0 == 0:
|
|
to_return_protect0 = to_return_protect1 = {
|
|
"visible": False,
|
|
"value": 0.5,
|
|
"__type__": "update",
|
|
}
|
|
else:
|
|
to_return_protect0 = {
|
|
"visible": True,
|
|
"value": to_return_protect0,
|
|
"__type__": "update",
|
|
}
|
|
to_return_protect1 = {
|
|
"visible": True,
|
|
"value": to_return_protect1,
|
|
"__type__": "update",
|
|
}
|
|
version = cpt.get("version", "v1")
|
|
if version == "v1":
|
|
if if_f0 == 1:
|
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
|
else:
|
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
|
elif version == "v2":
|
|
if if_f0 == 1:
|
|
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
|
else:
|
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
|
del net_g.enc_q
|
|
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
|
net_g.eval().to(config.device)
|
|
if config.is_half:
|
|
net_g = net_g.half()
|
|
else:
|
|
net_g = net_g.float()
|
|
vc = VC(tgt_sr, config)
|
|
n_spk = cpt["config"][-3]
|
|
return (
|
|
{"visible": True, "maximum": n_spk, "__type__": "update"},
|
|
to_return_protect0,
|
|
to_return_protect1,
|
|
)
|
|
|
|
|
|
def change_choices():
|
|
names = []
|
|
for name in os.listdir(weight_root):
|
|
if name.endswith(".pth"):
|
|
names.append(name)
|
|
index_paths = []
|
|
audio_paths = []
|
|
audios_path=os.path.abspath(os.getcwd()) + "/audios/"
|
|
for root, dirs, files in os.walk(index_root, topdown=False):
|
|
for name in files:
|
|
if name.endswith(".index") and "trained" not in name:
|
|
index_paths.append("%s/%s" % (root, name))
|
|
for file in os.listdir(audios_path):
|
|
audio_paths.append("%s/%s" % (audio_root, file))
|
|
return {"choices": sorted(names), "__type__": "update"}, {"choices": sorted(index_paths), "__type__": "update"}, {"choices": sorted(audio_paths), "__type__": "update"}
|
|
|
|
|
|
def clean():
|
|
return ({"value": "", "__type__": "update"})
|
|
|
|
|
|
sr_dict = {
|
|
"32k": 32000,
|
|
"40k": 40000,
|
|
"48k": 48000,
|
|
}
|
|
|
|
|
|
def if_done(done, p):
|
|
while 1:
|
|
if p.poll() is None:
|
|
sleep(0.5)
|
|
else:
|
|
break
|
|
done[0] = True
|
|
|
|
|
|
def if_done_multi(done, ps):
|
|
while 1:
|
|
|
|
|
|
flag = 1
|
|
for p in ps:
|
|
if p.poll() is None:
|
|
flag = 0
|
|
sleep(0.5)
|
|
break
|
|
if flag == 1:
|
|
break
|
|
done[0] = True
|
|
|
|
def formant_enabled(cbox, qfrency, tmbre, frmntapply, formantpreset, formant_refresh_button):
|
|
if (cbox):
|
|
|
|
DoFormant = True
|
|
cursor.execute("DELETE FROM formant_data")
|
|
cursor.execute("INSERT INTO formant_data (Quefrency, Timbre, DoFormant) VALUES (?, ?, ?)", (qfrency, tmbre, 1))
|
|
conn.commit()
|
|
|
|
|
|
|
|
return (
|
|
{"value": True, "__type__": "update"},
|
|
{"visible": True, "__type__": "update"},
|
|
{"visible": True, "__type__": "update"},
|
|
{"visible": True, "__type__": "update"},
|
|
{"visible": True, "__type__": "update"},
|
|
{"visible": True, "__type__": "update"},
|
|
)
|
|
|
|
|
|
else:
|
|
|
|
DoFormant = False
|
|
cursor.execute("DELETE FROM formant_data")
|
|
cursor.execute("INSERT INTO formant_data (Quefrency, Timbre, DoFormant) VALUES (?, ?, ?)", (qfrency, tmbre, int(DoFormant)))
|
|
conn.commit()
|
|
|
|
|
|
return (
|
|
{"value": False, "__type__": "update"},
|
|
{"visible": False, "__type__": "update"},
|
|
{"visible": False, "__type__": "update"},
|
|
{"visible": False, "__type__": "update"},
|
|
{"visible": False, "__type__": "update"},
|
|
{"visible": False, "__type__": "update"},
|
|
{"visible": False, "__type__": "update"},
|
|
)
|
|
|
|
|
|
def formant_apply(qfrency, tmbre):
|
|
Quefrency = qfrency
|
|
Timbre = tmbre
|
|
DoFormant = True
|
|
cursor.execute("DELETE FROM formant_data")
|
|
cursor.execute("INSERT INTO formant_data (Quefrency, Timbre, DoFormant) VALUES (?, ?, ?)", (qfrency, tmbre, 1))
|
|
conn.commit()
|
|
|
|
return ({"value": Quefrency, "__type__": "update"}, {"value": Timbre, "__type__": "update"})
|
|
|
|
def update_fshift_presets(preset, qfrency, tmbre):
|
|
|
|
qfrency, tmbre = preset_apply(preset, qfrency, tmbre)
|
|
|
|
if (str(preset) != ''):
|
|
with open(str(preset), 'r') as p:
|
|
content = p.readlines()
|
|
qfrency, tmbre = content[0].split('\n')[0], content[1]
|
|
|
|
formant_apply(qfrency, tmbre)
|
|
else:
|
|
pass
|
|
return (
|
|
{"choices": get_fshift_presets(), "__type__": "update"},
|
|
{"value": qfrency, "__type__": "update"},
|
|
{"value": tmbre, "__type__": "update"},
|
|
)
|
|
|
|
|
|
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
|
sr = sr_dict[sr]
|
|
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
|
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
|
f.close()
|
|
cmd = (
|
|
config.python_cmd
|
|
+ " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s "
|
|
% (trainset_dir, sr, n_p, now_dir, exp_dir)
|
|
+ str(config.noparallel)
|
|
)
|
|
print(cmd)
|
|
p = Popen(cmd, shell=True)
|
|
|
|
done = [False]
|
|
threading.Thread(
|
|
target=if_done,
|
|
args=(
|
|
done,
|
|
p,
|
|
),
|
|
).start()
|
|
while 1:
|
|
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
|
yield (f.read())
|
|
sleep(1)
|
|
if done[0]:
|
|
break
|
|
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
|
log = f.read()
|
|
print(log)
|
|
yield log
|
|
|
|
|
|
|
|
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, echl):
|
|
gpus = gpus.split("-")
|
|
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
|
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
|
f.close()
|
|
if if_f0:
|
|
cmd = config.python_cmd + " extract_f0_print.py %s/logs/%s %s %s %s" % (
|
|
now_dir,
|
|
exp_dir,
|
|
n_p,
|
|
f0method,
|
|
echl,
|
|
)
|
|
print(cmd)
|
|
p = Popen(cmd, shell=True, cwd=now_dir)
|
|
|
|
done = [False]
|
|
threading.Thread(
|
|
target=if_done,
|
|
args=(
|
|
done,
|
|
p,
|
|
),
|
|
).start()
|
|
while 1:
|
|
with open(
|
|
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
|
) as f:
|
|
yield (f.read())
|
|
sleep(1)
|
|
if done[0]:
|
|
break
|
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
|
log = f.read()
|
|
print(log)
|
|
yield log
|
|
|
|
"""
|
|
n_part=int(sys.argv[1])
|
|
i_part=int(sys.argv[2])
|
|
i_gpu=sys.argv[3]
|
|
exp_dir=sys.argv[4]
|
|
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
|
"""
|
|
leng = len(gpus)
|
|
ps = []
|
|
for idx, n_g in enumerate(gpus):
|
|
cmd = (
|
|
config.python_cmd
|
|
+ " extract_feature_print.py %s %s %s %s %s/logs/%s %s"
|
|
% (
|
|
config.device,
|
|
leng,
|
|
idx,
|
|
n_g,
|
|
now_dir,
|
|
exp_dir,
|
|
version19,
|
|
)
|
|
)
|
|
print(cmd)
|
|
p = Popen(
|
|
cmd, shell=True, cwd=now_dir
|
|
)
|
|
ps.append(p)
|
|
|
|
done = [False]
|
|
threading.Thread(
|
|
target=if_done_multi,
|
|
args=(
|
|
done,
|
|
ps,
|
|
),
|
|
).start()
|
|
while 1:
|
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
|
yield (f.read())
|
|
sleep(1)
|
|
if done[0]:
|
|
break
|
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
|
log = f.read()
|
|
print(log)
|
|
yield log
|
|
|
|
|
|
def change_sr2(sr2, if_f0_3, version19):
|
|
path_str = "" if version19 == "v1" else "_v2"
|
|
f0_str = "f0" if if_f0_3 else ""
|
|
if_pretrained_generator_exist = os.access(
|
|
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
|
)
|
|
if_pretrained_discriminator_exist = os.access(
|
|
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
|
)
|
|
if not if_pretrained_generator_exist:
|
|
print(
|
|
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2),
|
|
"doesn't exist, will not use pretrained model",
|
|
)
|
|
if not if_pretrained_discriminator_exist:
|
|
print(
|
|
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2),
|
|
"doesn't exist, will not use pretrained model",
|
|
)
|
|
return (
|
|
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
|
|
if if_pretrained_generator_exist
|
|
else "",
|
|
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
|
|
if if_pretrained_discriminator_exist
|
|
else "",
|
|
)
|
|
|
|
|
|
def change_version19(sr2, if_f0_3, version19):
|
|
path_str = "" if version19 == "v1" else "_v2"
|
|
if sr2 == "32k" and version19 == "v1":
|
|
sr2 = "40k"
|
|
to_return_sr2 = (
|
|
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
|
|
if version19 == "v1"
|
|
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
|
|
)
|
|
f0_str = "f0" if if_f0_3 else ""
|
|
if_pretrained_generator_exist = os.access(
|
|
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
|
)
|
|
if_pretrained_discriminator_exist = os.access(
|
|
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
|
)
|
|
if not if_pretrained_generator_exist:
|
|
print(
|
|
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2),
|
|
"doesn't exist, will not use pretrained model",
|
|
)
|
|
if not if_pretrained_discriminator_exist:
|
|
print(
|
|
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2),
|
|
"doesn't exist, will not use pretrained model",
|
|
)
|
|
return (
|
|
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
|
|
if if_pretrained_generator_exist
|
|
else "",
|
|
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
|
|
if if_pretrained_discriminator_exist
|
|
else "",
|
|
to_return_sr2,
|
|
)
|
|
|
|
|
|
def change_f0(if_f0_3, sr2, version19, step2b, gpus6, gpu_info9, extraction_crepe_hop_length, but2, info2):
|
|
path_str = "" if version19 == "v1" else "_v2"
|
|
if_pretrained_generator_exist = os.access(
|
|
"pretrained%s/f0G%s.pth" % (path_str, sr2), os.F_OK
|
|
)
|
|
if_pretrained_discriminator_exist = os.access(
|
|
"pretrained%s/f0D%s.pth" % (path_str, sr2), os.F_OK
|
|
)
|
|
if not if_pretrained_generator_exist:
|
|
print(
|
|
"pretrained%s/f0G%s.pth" % (path_str, sr2),
|
|
"not exist, will not use pretrained model",
|
|
)
|
|
if not if_pretrained_discriminator_exist:
|
|
print(
|
|
"pretrained%s/f0D%s.pth" % (path_str, sr2),
|
|
"not exist, will not use pretrained model",
|
|
)
|
|
|
|
if if_f0_3:
|
|
return (
|
|
{"visible": True, "__type__": "update"},
|
|
"pretrained%s/f0G%s.pth" % (path_str, sr2)
|
|
if if_pretrained_generator_exist
|
|
else "",
|
|
"pretrained%s/f0D%s.pth" % (path_str, sr2)
|
|
if if_pretrained_discriminator_exist
|
|
else "",
|
|
{"visible": True, "__type__": "update"},
|
|
{"visible": True, "__type__": "update"},
|
|
{"visible": True, "__type__": "update"},
|
|
{"visible": True, "__type__": "update"},
|
|
{"visible": True, "__type__": "update"},
|
|
{"visible": True, "__type__": "update"},
|
|
)
|
|
|
|
return (
|
|
{"visible": False, "__type__": "update"},
|
|
("pretrained%s/G%s.pth" % (path_str, sr2))
|
|
if if_pretrained_generator_exist
|
|
else "",
|
|
("pretrained%s/D%s.pth" % (path_str, sr2))
|
|
if if_pretrained_discriminator_exist
|
|
else "",
|
|
{"visible": False, "__type__": "update"},
|
|
{"visible": False, "__type__": "update"},
|
|
{"visible": False, "__type__": "update"},
|
|
{"visible": False, "__type__": "update"},
|
|
{"visible": False, "__type__": "update"},
|
|
{"visible": False, "__type__": "update"},
|
|
)
|
|
|
|
|
|
global log_interval
|
|
|
|
|
|
def set_log_interval(exp_dir, batch_size12):
|
|
log_interval = 1
|
|
|
|
folder_path = os.path.join(exp_dir, "1_16k_wavs")
|
|
|
|
if os.path.exists(folder_path) and os.path.isdir(folder_path):
|
|
wav_files = [f for f in os.listdir(folder_path) if f.endswith(".wav")]
|
|
if wav_files:
|
|
sample_size = len(wav_files)
|
|
log_interval = math.ceil(sample_size / batch_size12)
|
|
if log_interval > 1:
|
|
log_interval += 1
|
|
|
|
return log_interval
|
|
|
|
|
|
|
|
def click_train(
|
|
exp_dir1,
|
|
sr2,
|
|
if_f0_3,
|
|
spk_id5,
|
|
save_epoch10,
|
|
total_epoch11,
|
|
batch_size12,
|
|
if_save_latest13,
|
|
pretrained_G14,
|
|
pretrained_D15,
|
|
gpus16,
|
|
if_cache_gpu17,
|
|
if_save_every_weights18,
|
|
version19,
|
|
):
|
|
cursor.execute("DELETE FROM stop_train")
|
|
conn.commit()
|
|
|
|
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
|
os.makedirs(exp_dir, exist_ok=True)
|
|
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
|
feature_dir = (
|
|
"%s/3_feature256" % (exp_dir)
|
|
if version19 == "v1"
|
|
else "%s/3_feature768" % (exp_dir)
|
|
)
|
|
|
|
log_interval = set_log_interval(exp_dir, batch_size12)
|
|
|
|
if if_f0_3:
|
|
f0_dir = "%s/2a_f0" % (exp_dir)
|
|
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
|
names = (
|
|
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
|
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
|
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
|
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
|
)
|
|
else:
|
|
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
|
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
|
)
|
|
opt = []
|
|
for name in names:
|
|
if if_f0_3:
|
|
opt.append(
|
|
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
|
% (
|
|
gt_wavs_dir.replace("\\", "\\\\"),
|
|
name,
|
|
feature_dir.replace("\\", "\\\\"),
|
|
name,
|
|
f0_dir.replace("\\", "\\\\"),
|
|
name,
|
|
f0nsf_dir.replace("\\", "\\\\"),
|
|
name,
|
|
spk_id5,
|
|
)
|
|
)
|
|
else:
|
|
opt.append(
|
|
"%s/%s.wav|%s/%s.npy|%s"
|
|
% (
|
|
gt_wavs_dir.replace("\\", "\\\\"),
|
|
name,
|
|
feature_dir.replace("\\", "\\\\"),
|
|
name,
|
|
spk_id5,
|
|
)
|
|
)
|
|
fea_dim = 256 if version19 == "v1" else 768
|
|
if if_f0_3:
|
|
for _ in range(2):
|
|
opt.append(
|
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
|
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
|
)
|
|
else:
|
|
for _ in range(2):
|
|
opt.append(
|
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
|
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
|
)
|
|
shuffle(opt)
|
|
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
|
f.write("\n".join(opt))
|
|
print("write filelist done")
|
|
|
|
|
|
print("use gpus:", gpus16)
|
|
if pretrained_G14 == "":
|
|
print("no pretrained Generator")
|
|
if pretrained_D15 == "":
|
|
print("no pretrained Discriminator")
|
|
if gpus16:
|
|
|
|
cmd = (
|
|
config.python_cmd
|
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s -li %s"
|
|
% (
|
|
exp_dir1,
|
|
sr2,
|
|
1 if if_f0_3 else 0,
|
|
batch_size12,
|
|
gpus16,
|
|
total_epoch11,
|
|
save_epoch10,
|
|
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
|
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
|
1 if if_save_latest13 == True else 0,
|
|
1 if if_cache_gpu17 == True else 0,
|
|
1 if if_save_every_weights18 == True else 0,
|
|
version19,
|
|
log_interval,
|
|
)
|
|
)
|
|
else:
|
|
cmd = (
|
|
config.python_cmd
|
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s -li %s"
|
|
% (
|
|
exp_dir1,
|
|
sr2,
|
|
1 if if_f0_3 else 0,
|
|
batch_size12,
|
|
total_epoch11,
|
|
save_epoch10,
|
|
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "\b",
|
|
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "\b",
|
|
1 if if_save_latest13 == True else 0,
|
|
1 if if_cache_gpu17 == True else 0,
|
|
1 if if_save_every_weights18 == True else 0,
|
|
version19,
|
|
log_interval,
|
|
)
|
|
)
|
|
print(cmd)
|
|
global p
|
|
p = Popen(cmd, shell=True, cwd=now_dir)
|
|
global PID
|
|
PID = p.pid
|
|
|
|
p.wait()
|
|
return ("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log", {"visible": False, "__type__": "update"}, {"visible": True, "__type__": "update"})
|
|
|
|
|
|
|
|
def train_index(exp_dir1, version19):
|
|
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
|
os.makedirs(exp_dir, exist_ok=True)
|
|
feature_dir = (
|
|
"%s/3_feature256" % (exp_dir)
|
|
if version19 == "v1"
|
|
else "%s/3_feature768" % (exp_dir)
|
|
)
|
|
if not os.path.exists(feature_dir):
|
|
return "请先进行特征提取!"
|
|
listdir_res = list(os.listdir(feature_dir))
|
|
if len(listdir_res) == 0:
|
|
return "请先进行特征提取!"
|
|
infos = []
|
|
npys = []
|
|
for name in sorted(listdir_res):
|
|
phone = np.load("%s/%s" % (feature_dir, name))
|
|
npys.append(phone)
|
|
big_npy = np.concatenate(npys, 0)
|
|
big_npy_idx = np.arange(big_npy.shape[0])
|
|
np.random.shuffle(big_npy_idx)
|
|
big_npy = big_npy[big_npy_idx]
|
|
if big_npy.shape[0] > 2e5:
|
|
|
|
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
|
|
yield "\n".join(infos)
|
|
try:
|
|
big_npy = (
|
|
MiniBatchKMeans(
|
|
n_clusters=10000,
|
|
verbose=True,
|
|
batch_size=256 * config.n_cpu,
|
|
compute_labels=False,
|
|
init="random",
|
|
)
|
|
.fit(big_npy)
|
|
.cluster_centers_
|
|
)
|
|
except:
|
|
info = traceback.format_exc()
|
|
print(info)
|
|
infos.append(info)
|
|
yield "\n".join(infos)
|
|
|
|
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
|
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
|
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
|
yield "\n".join(infos)
|
|
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
|
|
|
infos.append("training")
|
|
yield "\n".join(infos)
|
|
index_ivf = faiss.extract_index_ivf(index)
|
|
index_ivf.nprobe = 1
|
|
index.train(big_npy)
|
|
faiss.write_index(
|
|
index,
|
|
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
|
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
|
)
|
|
|
|
infos.append("adding")
|
|
yield "\n".join(infos)
|
|
batch_size_add = 8192
|
|
for i in range(0, big_npy.shape[0], batch_size_add):
|
|
index.add(big_npy[i : i + batch_size_add])
|
|
faiss.write_index(
|
|
index,
|
|
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
|
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
|
)
|
|
infos.append(
|
|
"Successful Index Construction,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
|
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
|
)
|
|
|
|
|
|
yield "\n".join(infos)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train1key(
|
|
exp_dir1,
|
|
sr2,
|
|
if_f0_3,
|
|
trainset_dir4,
|
|
spk_id5,
|
|
np7,
|
|
f0method8,
|
|
save_epoch10,
|
|
total_epoch11,
|
|
batch_size12,
|
|
if_save_latest13,
|
|
pretrained_G14,
|
|
pretrained_D15,
|
|
gpus16,
|
|
if_cache_gpu17,
|
|
if_save_every_weights18,
|
|
version19,
|
|
echl
|
|
):
|
|
infos = []
|
|
|
|
def get_info_str(strr):
|
|
infos.append(strr)
|
|
return "\n".join(infos)
|
|
|
|
model_log_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
|
preprocess_log_path = "%s/preprocess.log" % model_log_dir
|
|
extract_f0_feature_log_path = "%s/extract_f0_feature.log" % model_log_dir
|
|
gt_wavs_dir = "%s/0_gt_wavs" % model_log_dir
|
|
feature_dir = (
|
|
"%s/3_feature256" % model_log_dir
|
|
if version19 == "v1"
|
|
else "%s/3_feature768" % model_log_dir
|
|
)
|
|
|
|
os.makedirs(model_log_dir, exist_ok=True)
|
|
|
|
open(preprocess_log_path, "w").close()
|
|
cmd = (
|
|
config.python_cmd
|
|
+ " trainset_preprocess_pipeline_print.py %s %s %s %s "
|
|
% (trainset_dir4, sr_dict[sr2], np7, model_log_dir)
|
|
+ str(config.noparallel)
|
|
)
|
|
yield get_info_str(i18n("step1:正在处理数据"))
|
|
yield get_info_str(cmd)
|
|
p = Popen(cmd, shell=True)
|
|
p.wait()
|
|
with open(preprocess_log_path, "r") as f:
|
|
print(f.read())
|
|
|
|
open(extract_f0_feature_log_path, "w")
|
|
if if_f0_3:
|
|
yield get_info_str("step2a:正在提取音高")
|
|
cmd = config.python_cmd + " extract_f0_print.py %s %s %s %s" % (
|
|
model_log_dir,
|
|
np7,
|
|
f0method8,
|
|
echl
|
|
)
|
|
yield get_info_str(cmd)
|
|
p = Popen(cmd, shell=True, cwd=now_dir)
|
|
p.wait()
|
|
with open(extract_f0_feature_log_path, "r") as f:
|
|
print(f.read())
|
|
else:
|
|
yield get_info_str(i18n("step2a:无需提取音高"))
|
|
|
|
yield get_info_str(i18n("step2b:正在提取特征"))
|
|
gpus = gpus16.split("-")
|
|
leng = len(gpus)
|
|
ps = []
|
|
for idx, n_g in enumerate(gpus):
|
|
cmd = config.python_cmd + " extract_feature_print.py %s %s %s %s %s %s" % (
|
|
config.device,
|
|
leng,
|
|
idx,
|
|
n_g,
|
|
model_log_dir,
|
|
version19,
|
|
)
|
|
yield get_info_str(cmd)
|
|
p = Popen(
|
|
cmd, shell=True, cwd=now_dir
|
|
)
|
|
ps.append(p)
|
|
for p in ps:
|
|
p.wait()
|
|
with open(extract_f0_feature_log_path, "r") as f:
|
|
print(f.read())
|
|
|
|
yield get_info_str(i18n("step3a:正在训练模型"))
|
|
|
|
if if_f0_3:
|
|
f0_dir = "%s/2a_f0" % model_log_dir
|
|
f0nsf_dir = "%s/2b-f0nsf" % model_log_dir
|
|
names = (
|
|
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
|
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
|
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
|
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
|
)
|
|
else:
|
|
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
|
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
|
)
|
|
opt = []
|
|
for name in names:
|
|
if if_f0_3:
|
|
opt.append(
|
|
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
|
% (
|
|
gt_wavs_dir.replace("\\", "\\\\"),
|
|
name,
|
|
feature_dir.replace("\\", "\\\\"),
|
|
name,
|
|
f0_dir.replace("\\", "\\\\"),
|
|
name,
|
|
f0nsf_dir.replace("\\", "\\\\"),
|
|
name,
|
|
spk_id5,
|
|
)
|
|
)
|
|
else:
|
|
opt.append(
|
|
"%s/%s.wav|%s/%s.npy|%s"
|
|
% (
|
|
gt_wavs_dir.replace("\\", "\\\\"),
|
|
name,
|
|
feature_dir.replace("\\", "\\\\"),
|
|
name,
|
|
spk_id5,
|
|
)
|
|
)
|
|
fea_dim = 256 if version19 == "v1" else 768
|
|
if if_f0_3:
|
|
for _ in range(2):
|
|
opt.append(
|
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
|
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
|
)
|
|
else:
|
|
for _ in range(2):
|
|
opt.append(
|
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
|
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
|
)
|
|
shuffle(opt)
|
|
with open("%s/filelist.txt" % model_log_dir, "w") as f:
|
|
f.write("\n".join(opt))
|
|
yield get_info_str("write filelist done")
|
|
if gpus16:
|
|
cmd = (
|
|
config.python_cmd
|
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
|
|
% (
|
|
exp_dir1,
|
|
sr2,
|
|
1 if if_f0_3 else 0,
|
|
batch_size12,
|
|
gpus16,
|
|
total_epoch11,
|
|
save_epoch10,
|
|
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
|
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
|
1 if if_save_latest13 == True else 0,
|
|
1 if if_cache_gpu17 == True else 0,
|
|
1 if if_save_every_weights18 == True else 0,
|
|
version19,
|
|
)
|
|
)
|
|
else:
|
|
cmd = (
|
|
config.python_cmd
|
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
|
|
% (
|
|
exp_dir1,
|
|
sr2,
|
|
1 if if_f0_3 else 0,
|
|
batch_size12,
|
|
total_epoch11,
|
|
save_epoch10,
|
|
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
|
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
|
1 if if_save_latest13 == True else 0,
|
|
1 if if_cache_gpu17 == True else 0,
|
|
1 if if_save_every_weights18 == True else 0,
|
|
version19,
|
|
)
|
|
)
|
|
yield get_info_str(cmd)
|
|
p = Popen(cmd, shell=True, cwd=now_dir)
|
|
p.wait()
|
|
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
|
|
|
|
npys = []
|
|
listdir_res = list(os.listdir(feature_dir))
|
|
for name in sorted(listdir_res):
|
|
phone = np.load("%s/%s" % (feature_dir, name))
|
|
npys.append(phone)
|
|
big_npy = np.concatenate(npys, 0)
|
|
|
|
big_npy_idx = np.arange(big_npy.shape[0])
|
|
np.random.shuffle(big_npy_idx)
|
|
big_npy = big_npy[big_npy_idx]
|
|
|
|
if big_npy.shape[0] > 2e5:
|
|
|
|
info = "Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0]
|
|
print(info)
|
|
yield get_info_str(info)
|
|
try:
|
|
big_npy = (
|
|
MiniBatchKMeans(
|
|
n_clusters=10000,
|
|
verbose=True,
|
|
batch_size=256 * config.n_cpu,
|
|
compute_labels=False,
|
|
init="random",
|
|
)
|
|
.fit(big_npy)
|
|
.cluster_centers_
|
|
)
|
|
except:
|
|
info = traceback.format_exc()
|
|
print(info)
|
|
yield get_info_str(info)
|
|
|
|
np.save("%s/total_fea.npy" % model_log_dir, big_npy)
|
|
|
|
|
|
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
|
yield get_info_str("%s,%s" % (big_npy.shape, n_ivf))
|
|
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
|
yield get_info_str("training index")
|
|
index_ivf = faiss.extract_index_ivf(index)
|
|
index_ivf.nprobe = 1
|
|
index.train(big_npy)
|
|
faiss.write_index(
|
|
index,
|
|
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
|
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
|
)
|
|
yield get_info_str("adding index")
|
|
batch_size_add = 8192
|
|
for i in range(0, big_npy.shape[0], batch_size_add):
|
|
index.add(big_npy[i : i + batch_size_add])
|
|
faiss.write_index(
|
|
index,
|
|
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
|
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
|
)
|
|
yield get_info_str(
|
|
"成功构建索引, added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
|
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
|
)
|
|
yield get_info_str(i18n("全流程结束!"))
|
|
|
|
|
|
|
|
def change_info_(ckpt_path):
|
|
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
|
|
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
|
try:
|
|
with open(
|
|
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
|
|
) as f:
|
|
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
|
sr, f0 = info["sample_rate"], info["if_f0"]
|
|
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
|
|
return sr, str(f0), version
|
|
except:
|
|
traceback.print_exc()
|
|
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
|
|
|
|
|
def export_onnx(ModelPath, ExportedPath):
|
|
cpt = torch.load(ModelPath, map_location="cpu")
|
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
|
vec_channels = 256 if cpt.get("version", "v1") == "v1" else 768
|
|
|
|
test_phone = torch.rand(1, 200, vec_channels)
|
|
test_phone_lengths = torch.tensor([200]).long()
|
|
test_pitch = torch.randint(size=(1, 200), low=5, high=255)
|
|
test_pitchf = torch.rand(1, 200)
|
|
test_ds = torch.LongTensor([0])
|
|
test_rnd = torch.rand(1, 192, 200)
|
|
|
|
device = "cpu"
|
|
|
|
|
|
net_g = SynthesizerTrnMsNSFsidM(
|
|
*cpt["config"], is_half=False, version=cpt.get("version", "v1")
|
|
)
|
|
net_g.load_state_dict(cpt["weight"], strict=False)
|
|
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
|
|
output_names = [
|
|
"audio",
|
|
]
|
|
|
|
torch.onnx.export(
|
|
net_g,
|
|
(
|
|
test_phone.to(device),
|
|
test_phone_lengths.to(device),
|
|
test_pitch.to(device),
|
|
test_pitchf.to(device),
|
|
test_ds.to(device),
|
|
test_rnd.to(device),
|
|
),
|
|
ExportedPath,
|
|
dynamic_axes={
|
|
"phone": [1],
|
|
"pitch": [1],
|
|
"pitchf": [1],
|
|
"rnd": [2],
|
|
},
|
|
do_constant_folding=False,
|
|
opset_version=13,
|
|
verbose=False,
|
|
input_names=input_names,
|
|
output_names=output_names,
|
|
)
|
|
return "Finished"
|
|
|
|
|
|
|
|
import re as regex
|
|
import scipy.io.wavfile as wavfile
|
|
|
|
cli_current_page = "HOME"
|
|
|
|
def cli_split_command(com):
|
|
exp = r'(?:(?<=\s)|^)"(.*?)"(?=\s|$)|(\S+)'
|
|
split_array = regex.findall(exp, com)
|
|
split_array = [group[0] if group[0] else group[1] for group in split_array]
|
|
return split_array
|
|
|
|
def execute_generator_function(genObject):
|
|
for _ in genObject: pass
|
|
|
|
def cli_infer(com):
|
|
|
|
com = cli_split_command(com)
|
|
model_name = com[0]
|
|
source_audio_path = com[1]
|
|
output_file_name = com[2]
|
|
feature_index_path = com[3]
|
|
f0_file = None
|
|
|
|
|
|
speaker_id = int(com[4])
|
|
transposition = float(com[5])
|
|
f0_method = com[6]
|
|
crepe_hop_length = int(com[7])
|
|
harvest_median_filter = int(com[8])
|
|
resample = int(com[9])
|
|
mix = float(com[10])
|
|
feature_ratio = float(com[11])
|
|
protection_amnt = float(com[12])
|
|
protect1 = 0.5
|
|
|
|
if com[14] == 'False' or com[14] == 'false':
|
|
DoFormant = False
|
|
Quefrency = 0.0
|
|
Timbre = 0.0
|
|
cursor.execute("DELETE FROM formant_data")
|
|
cursor.execute("INSERT INTO formant_data (Quefrency, Timbre, DoFormant) VALUES (?, ?, ?)", (Quefrency, Timbre, 0))
|
|
conn.commit()
|
|
|
|
else:
|
|
DoFormant = True
|
|
Quefrency = float(com[15])
|
|
Timbre = float(com[16])
|
|
cursor.execute("DELETE FROM formant_data")
|
|
cursor.execute("INSERT INTO formant_data (Quefrency, Timbre, DoFormant) VALUES (?, ?, ?)", (Quefrency, Timbre, 1))
|
|
conn.commit()
|
|
|
|
print("Mangio-RVC-Fork Infer-CLI: Starting the inference...")
|
|
vc_data = get_vc(model_name, protection_amnt, protect1)
|
|
print(vc_data)
|
|
print("Mangio-RVC-Fork Infer-CLI: Performing inference...")
|
|
conversion_data = vc_single(
|
|
speaker_id,
|
|
source_audio_path,
|
|
source_audio_path,
|
|
transposition,
|
|
f0_file,
|
|
f0_method,
|
|
feature_index_path,
|
|
feature_index_path,
|
|
feature_ratio,
|
|
harvest_median_filter,
|
|
resample,
|
|
mix,
|
|
protection_amnt,
|
|
crepe_hop_length,
|
|
)
|
|
if "Success." in conversion_data[0]:
|
|
print("Mangio-RVC-Fork Infer-CLI: Inference succeeded. Writing to %s/%s..." % ('audio-outputs', output_file_name))
|
|
wavfile.write('%s/%s' % ('audio-outputs', output_file_name), conversion_data[1][0], conversion_data[1][1])
|
|
print("Mangio-RVC-Fork Infer-CLI: Finished! Saved output to %s/%s" % ('audio-outputs', output_file_name))
|
|
else:
|
|
print("Mangio-RVC-Fork Infer-CLI: Inference failed. Here's the traceback: ")
|
|
print(conversion_data[0])
|
|
|
|
def cli_pre_process(com):
|
|
com = cli_split_command(com)
|
|
model_name = com[0]
|
|
trainset_directory = com[1]
|
|
sample_rate = com[2]
|
|
num_processes = int(com[3])
|
|
|
|
print("Mangio-RVC-Fork Pre-process: Starting...")
|
|
generator = preprocess_dataset(
|
|
trainset_directory,
|
|
model_name,
|
|
sample_rate,
|
|
num_processes
|
|
)
|
|
execute_generator_function(generator)
|
|
print("Mangio-RVC-Fork Pre-process: Finished")
|
|
|
|
def cli_extract_feature(com):
|
|
com = cli_split_command(com)
|
|
model_name = com[0]
|
|
gpus = com[1]
|
|
num_processes = int(com[2])
|
|
has_pitch_guidance = True if (int(com[3]) == 1) else False
|
|
f0_method = com[4]
|
|
crepe_hop_length = int(com[5])
|
|
version = com[6]
|
|
|
|
print("Mangio-RVC-CLI: Extract Feature Has Pitch: " + str(has_pitch_guidance))
|
|
print("Mangio-RVC-CLI: Extract Feature Version: " + str(version))
|
|
print("Mangio-RVC-Fork Feature Extraction: Starting...")
|
|
generator = extract_f0_feature(
|
|
gpus,
|
|
num_processes,
|
|
f0_method,
|
|
has_pitch_guidance,
|
|
model_name,
|
|
version,
|
|
crepe_hop_length
|
|
)
|
|
execute_generator_function(generator)
|
|
print("Mangio-RVC-Fork Feature Extraction: Finished")
|
|
|
|
def cli_train(com):
|
|
com = cli_split_command(com)
|
|
model_name = com[0]
|
|
sample_rate = com[1]
|
|
has_pitch_guidance = True if (int(com[2]) == 1) else False
|
|
speaker_id = int(com[3])
|
|
save_epoch_iteration = int(com[4])
|
|
total_epoch = int(com[5])
|
|
batch_size = int(com[6])
|
|
gpu_card_slot_numbers = com[7]
|
|
if_save_latest = True if (int(com[8]) == 1) else False
|
|
if_cache_gpu = True if (int(com[9]) == 1) else False
|
|
if_save_every_weight = True if (int(com[10]) == 1) else False
|
|
version = com[11]
|
|
|
|
pretrained_base = "pretrained/" if version == "v1" else "pretrained_v2/"
|
|
|
|
g_pretrained_path = "%sf0G%s.pth" % (pretrained_base, sample_rate)
|
|
d_pretrained_path = "%sf0D%s.pth" % (pretrained_base, sample_rate)
|
|
|
|
print("Mangio-RVC-Fork Train-CLI: Training...")
|
|
click_train(
|
|
model_name,
|
|
sample_rate,
|
|
has_pitch_guidance,
|
|
speaker_id,
|
|
save_epoch_iteration,
|
|
total_epoch,
|
|
batch_size,
|
|
if_save_latest,
|
|
g_pretrained_path,
|
|
d_pretrained_path,
|
|
gpu_card_slot_numbers,
|
|
if_cache_gpu,
|
|
if_save_every_weight,
|
|
version
|
|
)
|
|
|
|
def cli_train_feature(com):
|
|
com = cli_split_command(com)
|
|
model_name = com[0]
|
|
version = com[1]
|
|
print("Mangio-RVC-Fork Train Feature Index-CLI: Training... Please wait")
|
|
generator = train_index(
|
|
model_name,
|
|
version
|
|
)
|
|
execute_generator_function(generator)
|
|
print("Mangio-RVC-Fork Train Feature Index-CLI: Done!")
|
|
|
|
def cli_extract_model(com):
|
|
com = cli_split_command(com)
|
|
model_path = com[0]
|
|
save_name = com[1]
|
|
sample_rate = com[2]
|
|
has_pitch_guidance = com[3]
|
|
info = com[4]
|
|
version = com[5]
|
|
extract_small_model_process = extract_small_model(
|
|
model_path,
|
|
save_name,
|
|
sample_rate,
|
|
has_pitch_guidance,
|
|
info,
|
|
version
|
|
)
|
|
if extract_small_model_process == "Success.":
|
|
print("Mangio-RVC-Fork Extract Small Model: Success!")
|
|
else:
|
|
print(str(extract_small_model_process))
|
|
print("Mangio-RVC-Fork Extract Small Model: Failed!")
|
|
|
|
|
|
def preset_apply(preset, qfer, tmbr):
|
|
if str(preset) != '':
|
|
with open(str(preset), 'r') as p:
|
|
content = p.readlines()
|
|
qfer, tmbr = content[0].split('\n')[0], content[1]
|
|
formant_apply(qfer, tmbr)
|
|
else:
|
|
pass
|
|
return ({"value": qfer, "__type__": "update"}, {"value": tmbr, "__type__": "update"})
|
|
|
|
def print_page_details():
|
|
if cli_current_page == "HOME":
|
|
print(
|
|
"\n go home : Takes you back to home with a navigation list."
|
|
"\n go infer : Takes you to inference command execution."
|
|
"\n go pre-process : Takes you to training step.1) pre-process command execution."
|
|
"\n go extract-feature : Takes you to training step.2) extract-feature command execution."
|
|
"\n go train : Takes you to training step.3) being or continue training command execution."
|
|
"\n go train-feature : Takes you to the train feature index command execution."
|
|
"\n go extract-model : Takes you to the extract small model command execution."
|
|
)
|
|
elif cli_current_page == "INFER":
|
|
print(
|
|
"\n arg 1) model name with .pth in ./weights: mi-test.pth"
|
|
"\n arg 2) source audio path: myFolder\\MySource.wav"
|
|
"\n arg 3) output file name to be placed in './audio-outputs': MyTest.wav"
|
|
"\n arg 4) feature index file path: logs/mi-test/added_IVF3042_Flat_nprobe_1.index"
|
|
"\n arg 5) speaker id: 0"
|
|
"\n arg 6) transposition: 0"
|
|
"\n arg 7) f0 method: harvest (pm, harvest, crepe, crepe-tiny, hybrid[x,x,x,x], mangio-crepe, mangio-crepe-tiny, rmvpe)"
|
|
"\n arg 8) crepe hop length: 160"
|
|
"\n arg 9) harvest median filter radius: 3 (0-7)"
|
|
"\n arg 10) post resample rate: 0"
|
|
"\n arg 11) mix volume envelope: 1"
|
|
"\n arg 12) feature index ratio: 0.78 (0-1)"
|
|
"\n arg 13) Voiceless Consonant Protection (Less Artifact): 0.33 (Smaller number = more protection. 0.50 means Dont Use.)"
|
|
"\n arg 14) Whether to formant shift the inference audio before conversion: False (if set to false, you can ignore setting the quefrency and timbre values for formanting)"
|
|
"\n arg 15)* Quefrency for formanting: 8.0 (no need to set if arg14 is False/false)"
|
|
"\n arg 16)* Timbre for formanting: 1.2 (no need to set if arg14 is False/false) \n"
|
|
"\nExample: mi-test.pth saudio/Sidney.wav myTest.wav logs/mi-test/added_index.index 0 -2 harvest 160 3 0 1 0.95 0.33 0.45 True 8.0 1.2"
|
|
)
|
|
elif cli_current_page == "PRE-PROCESS":
|
|
print(
|
|
"\n arg 1) Model folder name in ./logs: mi-test"
|
|
"\n arg 2) Trainset directory: mydataset (or) E:\\my-data-set"
|
|
"\n arg 3) Sample rate: 40k (32k, 40k, 48k)"
|
|
"\n arg 4) Number of CPU threads to use: 8 \n"
|
|
"\nExample: mi-test mydataset 40k 24"
|
|
)
|
|
elif cli_current_page == "EXTRACT-FEATURE":
|
|
print(
|
|
"\n arg 1) Model folder name in ./logs: mi-test"
|
|
"\n arg 2) Gpu card slot: 0 (0-1-2 if using 3 GPUs)"
|
|
"\n arg 3) Number of CPU threads to use: 8"
|
|
"\n arg 4) Has Pitch Guidance?: 1 (0 for no, 1 for yes)"
|
|
"\n arg 5) f0 Method: harvest (pm, harvest, dio, crepe)"
|
|
"\n arg 6) Crepe hop length: 128"
|
|
"\n arg 7) Version for pre-trained models: v2 (use either v1 or v2)\n"
|
|
"\nExample: mi-test 0 24 1 harvest 128 v2"
|
|
)
|
|
elif cli_current_page == "TRAIN":
|
|
print(
|
|
"\n arg 1) Model folder name in ./logs: mi-test"
|
|
"\n arg 2) Sample rate: 40k (32k, 40k, 48k)"
|
|
"\n arg 3) Has Pitch Guidance?: 1 (0 for no, 1 for yes)"
|
|
"\n arg 4) speaker id: 0"
|
|
"\n arg 5) Save epoch iteration: 50"
|
|
"\n arg 6) Total epochs: 10000"
|
|
"\n arg 7) Batch size: 8"
|
|
"\n arg 8) Gpu card slot: 0 (0-1-2 if using 3 GPUs)"
|
|
"\n arg 9) Save only the latest checkpoint: 0 (0 for no, 1 for yes)"
|
|
"\n arg 10) Whether to cache training set to vram: 0 (0 for no, 1 for yes)"
|
|
"\n arg 11) Save extracted small model every generation?: 0 (0 for no, 1 for yes)"
|
|
"\n arg 12) Model architecture version: v2 (use either v1 or v2)\n"
|
|
"\nExample: mi-test 40k 1 0 50 10000 8 0 0 0 0 v2"
|
|
)
|
|
elif cli_current_page == "TRAIN-FEATURE":
|
|
print(
|
|
"\n arg 1) Model folder name in ./logs: mi-test"
|
|
"\n arg 2) Model architecture version: v2 (use either v1 or v2)\n"
|
|
"\nExample: mi-test v2"
|
|
)
|
|
elif cli_current_page == "EXTRACT-MODEL":
|
|
print(
|
|
"\n arg 1) Model Path: logs/mi-test/G_168000.pth"
|
|
"\n arg 2) Model save name: MyModel"
|
|
"\n arg 3) Sample rate: 40k (32k, 40k, 48k)"
|
|
"\n arg 4) Has Pitch Guidance?: 1 (0 for no, 1 for yes)"
|
|
'\n arg 5) Model information: "My Model"'
|
|
"\n arg 6) Model architecture version: v2 (use either v1 or v2)\n"
|
|
'\nExample: logs/mi-test/G_168000.pth MyModel 40k 1 "Created by Cole Mangio" v2'
|
|
)
|
|
|
|
def change_page(page):
|
|
global cli_current_page
|
|
cli_current_page = page
|
|
return 0
|
|
|
|
def execute_command(com):
|
|
if com == "go home":
|
|
return change_page("HOME")
|
|
elif com == "go infer":
|
|
return change_page("INFER")
|
|
elif com == "go pre-process":
|
|
return change_page("PRE-PROCESS")
|
|
elif com == "go extract-feature":
|
|
return change_page("EXTRACT-FEATURE")
|
|
elif com == "go train":
|
|
return change_page("TRAIN")
|
|
elif com == "go train-feature":
|
|
return change_page("TRAIN-FEATURE")
|
|
elif com == "go extract-model":
|
|
return change_page("EXTRACT-MODEL")
|
|
else:
|
|
if com[:3] == "go ":
|
|
print("page '%s' does not exist!" % com[3:])
|
|
return 0
|
|
|
|
if cli_current_page == "INFER":
|
|
cli_infer(com)
|
|
elif cli_current_page == "PRE-PROCESS":
|
|
cli_pre_process(com)
|
|
elif cli_current_page == "EXTRACT-FEATURE":
|
|
cli_extract_feature(com)
|
|
elif cli_current_page == "TRAIN":
|
|
cli_train(com)
|
|
elif cli_current_page == "TRAIN-FEATURE":
|
|
cli_train_feature(com)
|
|
elif cli_current_page == "EXTRACT-MODEL":
|
|
cli_extract_model(com)
|
|
|
|
def cli_navigation_loop():
|
|
while True:
|
|
print("\nYou are currently in '%s':" % cli_current_page)
|
|
print_page_details()
|
|
command = input("%s: " % cli_current_page)
|
|
try:
|
|
execute_command(command)
|
|
except:
|
|
print(traceback.format_exc())
|
|
|
|
if(config.is_cli):
|
|
print("\n\nMangio-RVC-Fork v2 CLI App!\n")
|
|
print("Welcome to the CLI version of RVC. Please read the documentation on https://github.com/Mangio621/Mangio-RVC-Fork (README.MD) to understand how to use this app.\n")
|
|
cli_navigation_loop()
|
|
|
|
|
|
|
|
|
|
|
|
def get_presets():
|
|
data = None
|
|
with open('../inference-presets.json', 'r') as file:
|
|
data = json.load(file)
|
|
preset_names = []
|
|
for preset in data['presets']:
|
|
preset_names.append(preset['name'])
|
|
|
|
return preset_names
|
|
|
|
def stepdisplay(if_save_every_weights):
|
|
return ({"visible": if_save_every_weights, "__type__": "update"})
|
|
|
|
def match_index(sid0):
|
|
picked = False
|
|
|
|
|
|
|
|
folder = sid0.split('.')[0].split('_')[0]
|
|
|
|
parent_dir = "./logs/" + folder
|
|
|
|
if os.path.exists(parent_dir):
|
|
|
|
for filename in os.listdir(parent_dir.replace('\\','/')):
|
|
if filename.endswith(".index"):
|
|
for i in range(len(indexes_list)):
|
|
if indexes_list[i] == (os.path.join(("./logs/" + folder), filename).replace('\\','/')):
|
|
|
|
break
|
|
else:
|
|
if indexes_list[i] == (os.path.join(("./logs/" + folder.lower()), filename).replace('\\','/')):
|
|
|
|
parent_dir = "./logs/" + folder.lower()
|
|
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
index_path=os.path.join(parent_dir.replace('\\','/'), filename.replace('\\','/')).replace('\\','/')
|
|
|
|
return (index_path, index_path)
|
|
|
|
|
|
else:
|
|
|
|
return ('', '')
|
|
|
|
def stoptraining(mim):
|
|
if int(mim) == 1:
|
|
|
|
cursor.execute("INSERT INTO stop_train (stop) VALUES (?)", (True,))
|
|
conn.commit()
|
|
|
|
|
|
try:
|
|
os.kill(PID, signal.SIGTERM)
|
|
except Exception as e:
|
|
print(f"Couldn't click due to {e}")
|
|
pass
|
|
else:
|
|
pass
|
|
|
|
return (
|
|
{"visible": False, "__type__": "update"},
|
|
{"visible": True, "__type__": "update"},
|
|
)
|
|
|
|
|
|
def whethercrepeornah(radio):
|
|
mango = True if radio == 'mangio-crepe' or radio == 'mangio-crepe-tiny' else False
|
|
|
|
return ({"visible": mango, "__type__": "update"})
|
|
|
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft(), title='Mangio-RVC-Web 💻') as app:
|
|
gr.HTML("<h1> The Mangio-RVC-Fork 💻 </h1>")
|
|
gr.Markdown(
|
|
value=i18n(
|
|
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>使用需遵守的协议-LICENSE.txt</b>."
|
|
)
|
|
)
|
|
with gr.Tabs():
|
|
|
|
with gr.TabItem(i18n("模型推理")):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Row():
|
|
|
|
|
|
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names), value='')
|
|
|
|
|
|
|
|
refresh_button = gr.Button(i18n("Refresh voice list, index path and audio files"), variant="primary")
|
|
clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
|
|
spk_item = gr.Slider(
|
|
minimum=0,
|
|
maximum=2333,
|
|
step=1,
|
|
label=i18n("请选择说话人id"),
|
|
value=0,
|
|
visible=False,
|
|
interactive=True,
|
|
)
|
|
clean_button.click(fn=clean, inputs=[], outputs=[sid0])
|
|
|
|
with gr.Group():
|
|
gr.Markdown(
|
|
value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ")
|
|
)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
vc_transform0 = gr.Number(
|
|
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
|
)
|
|
input_audio0 = gr.Textbox(
|
|
label=i18n("Add audio's name to the path to the audio file to be processed (default is the correct format example) Remove the path to use an audio from the dropdown list:"),
|
|
value=os.path.abspath(os.getcwd()).replace('\\', '/') + "/audios/" + "audio.wav",
|
|
)
|
|
input_audio1 = gr.Dropdown(
|
|
label=i18n("Auto detect audio path and select from the dropdown:"),
|
|
choices=sorted(audio_paths),
|
|
value='',
|
|
interactive=True,
|
|
)
|
|
input_audio1.change(fn=lambda:'',inputs=[],outputs=[input_audio0])
|
|
f0method0 = gr.Radio(
|
|
label=i18n(
|
|
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"
|
|
),
|
|
choices=["pm", "harvest", "dio", "crepe", "crepe-tiny", "mangio-crepe", "mangio-crepe-tiny", "rmvpe"],
|
|
value="rmvpe",
|
|
interactive=True,
|
|
)
|
|
crepe_hop_length = gr.Slider(
|
|
minimum=1,
|
|
maximum=512,
|
|
step=1,
|
|
label=i18n("crepe_hop_length"),
|
|
value=120,
|
|
interactive=True,
|
|
visible=False,
|
|
)
|
|
f0method0.change(fn=whethercrepeornah, inputs=[f0method0], outputs=[crepe_hop_length])
|
|
filter_radius0 = gr.Slider(
|
|
minimum=0,
|
|
maximum=7,
|
|
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
|
value=3,
|
|
step=1,
|
|
interactive=True,
|
|
)
|
|
with gr.Column():
|
|
file_index1 = gr.Textbox(
|
|
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
|
value="",
|
|
interactive=True,
|
|
)
|
|
|
|
file_index2 = gr.Dropdown(
|
|
label="3. Path to your added.index file (if it didn't automatically find it.)",
|
|
choices=get_indexes(),
|
|
value=get_index(),
|
|
interactive=True,
|
|
allow_custom_value=True,
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
refresh_button.click(
|
|
fn=change_choices, inputs=[], outputs=[sid0, file_index2, input_audio1]
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
index_rate1 = gr.Slider(
|
|
minimum=0,
|
|
maximum=1,
|
|
label=i18n("检索特征占比"),
|
|
value=0.75,
|
|
interactive=True,
|
|
)
|
|
with gr.Column():
|
|
resample_sr0 = gr.Slider(
|
|
minimum=0,
|
|
maximum=48000,
|
|
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
|
value=0,
|
|
step=1,
|
|
interactive=True,
|
|
)
|
|
rms_mix_rate0 = gr.Slider(
|
|
minimum=0,
|
|
maximum=1,
|
|
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
|
value=0.25,
|
|
interactive=True,
|
|
)
|
|
protect0 = gr.Slider(
|
|
minimum=0,
|
|
maximum=0.5,
|
|
label=i18n(
|
|
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
|
),
|
|
value=0.33,
|
|
step=0.01,
|
|
interactive=True,
|
|
)
|
|
formanting = gr.Checkbox(
|
|
value=bool(DoFormant),
|
|
label="[EXPERIMENTAL] Formant shift inference audio",
|
|
info="Used for male to female and vice-versa conversions",
|
|
interactive=True,
|
|
visible=True,
|
|
)
|
|
|
|
formant_preset = gr.Dropdown(
|
|
value='',
|
|
choices=get_fshift_presets(),
|
|
label="browse presets for formanting",
|
|
visible=bool(DoFormant),
|
|
)
|
|
|
|
formant_refresh_button = gr.Button(
|
|
value='\U0001f504',
|
|
visible=bool(DoFormant),
|
|
variant='primary',
|
|
)
|
|
|
|
qfrency = gr.Slider(
|
|
value=Quefrency,
|
|
info="Default value is 1.0",
|
|
label="Quefrency for formant shifting",
|
|
minimum=0.0,
|
|
maximum=16.0,
|
|
step=0.1,
|
|
visible=bool(DoFormant),
|
|
interactive=True,
|
|
)
|
|
|
|
tmbre = gr.Slider(
|
|
value=Timbre,
|
|
info="Default value is 1.0",
|
|
label="Timbre for formant shifting",
|
|
minimum=0.0,
|
|
maximum=16.0,
|
|
step=0.1,
|
|
visible=bool(DoFormant),
|
|
interactive=True,
|
|
)
|
|
|
|
formant_preset.change(fn=preset_apply, inputs=[formant_preset, qfrency, tmbre], outputs=[qfrency, tmbre])
|
|
frmntbut = gr.Button("Apply", variant="primary", visible=bool(DoFormant))
|
|
formanting.change(fn=formant_enabled,inputs=[formanting,qfrency,tmbre,frmntbut,formant_preset,formant_refresh_button],outputs=[formanting,qfrency,tmbre,frmntbut,formant_preset,formant_refresh_button])
|
|
frmntbut.click(fn=formant_apply,inputs=[qfrency, tmbre], outputs=[qfrency, tmbre])
|
|
formant_refresh_button.click(fn=update_fshift_presets,inputs=[formant_preset, qfrency, tmbre],outputs=[formant_preset, qfrency, tmbre])
|
|
|
|
|
|
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"))
|
|
but0 = gr.Button(i18n("转换"), variant="primary")
|
|
with gr.Row():
|
|
vc_output1 = gr.Textbox(label=i18n("输出信息"))
|
|
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
|
|
but0.click(
|
|
vc_single,
|
|
[
|
|
spk_item,
|
|
input_audio0,
|
|
input_audio1,
|
|
vc_transform0,
|
|
f0_file,
|
|
f0method0,
|
|
file_index1,
|
|
file_index2,
|
|
|
|
index_rate1,
|
|
filter_radius0,
|
|
resample_sr0,
|
|
rms_mix_rate0,
|
|
protect0,
|
|
crepe_hop_length
|
|
],
|
|
[vc_output1, vc_output2],
|
|
)
|
|
with gr.Group():
|
|
gr.Markdown(
|
|
value=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ")
|
|
)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
vc_transform1 = gr.Number(
|
|
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
|
)
|
|
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
|
|
f0method1 = gr.Radio(
|
|
label=i18n(
|
|
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"
|
|
),
|
|
choices=["pm", "harvest", "crepe", "rmvpe"],
|
|
value="rmvpe",
|
|
interactive=True,
|
|
)
|
|
|
|
filter_radius1 = gr.Slider(
|
|
minimum=0,
|
|
maximum=7,
|
|
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
|
value=3,
|
|
step=1,
|
|
interactive=True,
|
|
)
|
|
with gr.Column():
|
|
file_index3 = gr.Textbox(
|
|
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
|
value="",
|
|
interactive=True,
|
|
)
|
|
file_index4 = gr.Dropdown(
|
|
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
|
choices=get_indexes(),
|
|
value=get_index(),
|
|
interactive=True,
|
|
)
|
|
sid0.select(fn=match_index, inputs=[sid0], outputs=[file_index2, file_index4])
|
|
refresh_button.click(
|
|
fn=lambda: change_choices()[1],
|
|
inputs=[],
|
|
outputs=file_index4,
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
index_rate2 = gr.Slider(
|
|
minimum=0,
|
|
maximum=1,
|
|
label=i18n("检索特征占比"),
|
|
value=1,
|
|
interactive=True,
|
|
)
|
|
with gr.Column():
|
|
resample_sr1 = gr.Slider(
|
|
minimum=0,
|
|
maximum=48000,
|
|
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
|
value=0,
|
|
step=1,
|
|
interactive=True,
|
|
)
|
|
rms_mix_rate1 = gr.Slider(
|
|
minimum=0,
|
|
maximum=1,
|
|
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
|
value=1,
|
|
interactive=True,
|
|
)
|
|
protect1 = gr.Slider(
|
|
minimum=0,
|
|
maximum=0.5,
|
|
label=i18n(
|
|
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
|
),
|
|
value=0.33,
|
|
step=0.01,
|
|
interactive=True,
|
|
)
|
|
with gr.Column():
|
|
dir_input = gr.Textbox(
|
|
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
|
|
value=os.path.abspath(os.getcwd()).replace('\\', '/') + "/audios/",
|
|
)
|
|
inputs = gr.File(
|
|
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
|
)
|
|
with gr.Row():
|
|
format1 = gr.Radio(
|
|
label=i18n("导出文件格式"),
|
|
choices=["wav", "flac", "mp3", "m4a"],
|
|
value="flac",
|
|
interactive=True,
|
|
)
|
|
but1 = gr.Button(i18n("转换"), variant="primary")
|
|
vc_output3 = gr.Textbox(label=i18n("输出信息"))
|
|
but1.click(
|
|
vc_multi,
|
|
[
|
|
spk_item,
|
|
dir_input,
|
|
opt_input,
|
|
inputs,
|
|
vc_transform1,
|
|
f0method1,
|
|
file_index3,
|
|
file_index4,
|
|
|
|
index_rate2,
|
|
filter_radius1,
|
|
resample_sr1,
|
|
rms_mix_rate1,
|
|
protect1,
|
|
format1,
|
|
crepe_hop_length,
|
|
],
|
|
[vc_output3],
|
|
)
|
|
sid0.change(
|
|
fn=get_vc,
|
|
inputs=[sid0, protect0, protect1],
|
|
outputs=[spk_item, protect0, protect1],
|
|
)
|
|
with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
|
|
with gr.Group():
|
|
gr.Markdown(
|
|
value=i18n(
|
|
"人声伴奏分离批量处理, 使用UVR5模型。 <br>"
|
|
"合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>"
|
|
"模型分为三类: <br>"
|
|
"1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点; <br>"
|
|
"2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型; <br> "
|
|
"3、去混响、去延迟模型(by FoxJoy):<br>"
|
|
" (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>"
|
|
" (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。<br>"
|
|
"去混响/去延迟,附:<br>"
|
|
"1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;<br>"
|
|
"2、MDX-Net-Dereverb模型挺慢的;<br>"
|
|
"3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"
|
|
)
|
|
)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
dir_wav_input = gr.Textbox(
|
|
label=i18n("输入待处理音频文件夹路径"),
|
|
value=((os.getcwd()).replace('\\', '/') + "/audios/")
|
|
)
|
|
wav_inputs = gr.File(
|
|
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
|
)
|
|
with gr.Column():
|
|
model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names)
|
|
agg = gr.Slider(
|
|
minimum=0,
|
|
maximum=20,
|
|
step=1,
|
|
label="人声提取激进程度",
|
|
value=10,
|
|
interactive=True,
|
|
visible=False,
|
|
)
|
|
opt_vocal_root = gr.Textbox(
|
|
label=i18n("指定输出主人声文件夹"), value="opt"
|
|
)
|
|
opt_ins_root = gr.Textbox(
|
|
label=i18n("指定输出非主人声文件夹"), value="opt"
|
|
)
|
|
format0 = gr.Radio(
|
|
label=i18n("导出文件格式"),
|
|
choices=["wav", "flac", "mp3", "m4a"],
|
|
value="flac",
|
|
interactive=True,
|
|
)
|
|
but2 = gr.Button(i18n("转换"), variant="primary")
|
|
vc_output4 = gr.Textbox(label=i18n("输出信息"))
|
|
but2.click(
|
|
uvr,
|
|
[
|
|
model_choose,
|
|
dir_wav_input,
|
|
opt_vocal_root,
|
|
wav_inputs,
|
|
opt_ins_root,
|
|
agg,
|
|
format0,
|
|
],
|
|
[vc_output4],
|
|
)
|
|
with gr.TabItem(i18n("训练")):
|
|
gr.Markdown(
|
|
value=i18n(
|
|
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. "
|
|
)
|
|
)
|
|
with gr.Row():
|
|
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test")
|
|
sr2 = gr.Radio(
|
|
label=i18n("目标采样率"),
|
|
choices=["40k", "48k"],
|
|
value="40k",
|
|
interactive=True,
|
|
)
|
|
if_f0_3 = gr.Checkbox(
|
|
label="Whether the model has pitch guidance.",
|
|
value=True,
|
|
interactive=True,
|
|
)
|
|
version19 = gr.Radio(
|
|
label=i18n("版本"),
|
|
choices=["v1", "v2"],
|
|
value="v1",
|
|
interactive=True,
|
|
visible=True,
|
|
)
|
|
np7 = gr.Slider(
|
|
minimum=0,
|
|
maximum=config.n_cpu,
|
|
step=1,
|
|
label=i18n("提取音高和处理数据使用的CPU进程数"),
|
|
value=int(np.ceil(config.n_cpu / 1.5)),
|
|
interactive=True,
|
|
)
|
|
with gr.Group():
|
|
gr.Markdown(
|
|
value=i18n(
|
|
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. "
|
|
)
|
|
)
|
|
with gr.Row():
|
|
trainset_dir4 = gr.Textbox(
|
|
label=i18n("输入训练文件夹路径"), value=os.path.abspath(os.getcwd()) + "\\datasets\\"
|
|
)
|
|
spk_id5 = gr.Slider(
|
|
minimum=0,
|
|
maximum=4,
|
|
step=1,
|
|
label=i18n("请指定说话人id"),
|
|
value=0,
|
|
interactive=True,
|
|
)
|
|
but1 = gr.Button(i18n("处理数据"), variant="primary")
|
|
info1 = gr.Textbox(label=i18n("输出信息"), value="")
|
|
but1.click(
|
|
preprocess_dataset, [trainset_dir4, exp_dir1, sr2, np7], [info1]
|
|
)
|
|
with gr.Group():
|
|
step2b = gr.Markdown(value=i18n("step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)"))
|
|
with gr.Row():
|
|
with gr.Column():
|
|
gpus6 = gr.Textbox(
|
|
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
|
value=gpus,
|
|
interactive=True,
|
|
)
|
|
gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info)
|
|
with gr.Column():
|
|
f0method8 = gr.Radio(
|
|
label=i18n(
|
|
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢"
|
|
),
|
|
choices=["pm", "harvest", "dio", "crepe", "mangio-crepe", "rmvpe"],
|
|
value="rmvpe",
|
|
interactive=True,
|
|
)
|
|
|
|
extraction_crepe_hop_length = gr.Slider(
|
|
minimum=1,
|
|
maximum=512,
|
|
step=1,
|
|
label=i18n("crepe_hop_length"),
|
|
value=64,
|
|
interactive=True,
|
|
visible=False,
|
|
)
|
|
|
|
f0method8.change(fn=whethercrepeornah, inputs=[f0method8], outputs=[extraction_crepe_hop_length])
|
|
but2 = gr.Button(i18n("特征提取"), variant="primary")
|
|
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8, interactive=False)
|
|
but2.click(
|
|
extract_f0_feature,
|
|
[gpus6, np7, f0method8, if_f0_3, exp_dir1, version19, extraction_crepe_hop_length],
|
|
[info2],
|
|
)
|
|
with gr.Group():
|
|
gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
|
|
with gr.Row():
|
|
save_epoch10 = gr.Slider(
|
|
minimum=1,
|
|
maximum=50,
|
|
step=1,
|
|
label=i18n("保存频率save_every_epoch"),
|
|
value=5,
|
|
interactive=True,
|
|
visible=True,
|
|
)
|
|
total_epoch11 = gr.Slider(
|
|
minimum=1,
|
|
maximum=10000,
|
|
step=1,
|
|
label=i18n("总训练轮数total_epoch"),
|
|
value=20,
|
|
interactive=True,
|
|
)
|
|
batch_size12 = gr.Slider(
|
|
minimum=1,
|
|
maximum=40,
|
|
step=1,
|
|
label=i18n("每张显卡的batch_size"),
|
|
value=default_batch_size,
|
|
interactive=True,
|
|
)
|
|
if_save_latest13 = gr.Checkbox(
|
|
label="Whether to save only the latest .ckpt file to save hard drive space",
|
|
value=True,
|
|
interactive=True,
|
|
)
|
|
if_cache_gpu17 = gr.Checkbox(
|
|
label="Cache all training sets to GPU memory. Caching small datasets (less than 10 minutes) can speed up training, but caching large datasets will consume a lot of GPU memory and may not provide much speed improvement",
|
|
value=False,
|
|
interactive=True,
|
|
)
|
|
if_save_every_weights18 = gr.Checkbox(
|
|
label="Save a small final model to the 'weights' folder at each save point",
|
|
value=True,
|
|
interactive=True,
|
|
)
|
|
with gr.Row():
|
|
pretrained_G14 = gr.Textbox(
|
|
lines=2,
|
|
label=i18n("加载预训练底模G路径"),
|
|
value="pretrained/f0G40k.pth",
|
|
interactive=True,
|
|
)
|
|
pretrained_D15 = gr.Textbox(
|
|
lines=2,
|
|
label=i18n("加载预训练底模D路径"),
|
|
value="pretrained/f0D40k.pth",
|
|
interactive=True,
|
|
)
|
|
sr2.change(
|
|
change_sr2,
|
|
[sr2, if_f0_3, version19],
|
|
[pretrained_G14, pretrained_D15],
|
|
)
|
|
version19.change(
|
|
change_version19,
|
|
[sr2, if_f0_3, version19],
|
|
[pretrained_G14, pretrained_D15, sr2],
|
|
)
|
|
|
|
if_f0_3.change(
|
|
fn=change_f0,
|
|
inputs=[if_f0_3, sr2, version19, step2b, gpus6, gpu_info9, extraction_crepe_hop_length, but2, info2],
|
|
outputs=[f0method8, pretrained_G14, pretrained_D15, step2b, gpus6, gpu_info9, extraction_crepe_hop_length, but2, info2],
|
|
)
|
|
if_f0_3.change(fn=whethercrepeornah, inputs=[f0method8], outputs=[extraction_crepe_hop_length])
|
|
gpus16 = gr.Textbox(
|
|
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
|
value=gpus,
|
|
interactive=True,
|
|
)
|
|
butstop = gr.Button(
|
|
"Stop Training",
|
|
variant='primary',
|
|
visible=False,
|
|
)
|
|
but3 = gr.Button(i18n("训练模型"), variant="primary", visible=True)
|
|
but3.click(fn=stoptraining, inputs=[gr.Number(value=0, visible=False)], outputs=[but3, butstop])
|
|
butstop.click(fn=stoptraining, inputs=[gr.Number(value=1, visible=False)], outputs=[butstop, but3])
|
|
|
|
|
|
but4 = gr.Button(i18n("训练特征索引"), variant="primary")
|
|
|
|
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
|
|
|
|
if_save_every_weights18.change(fn=stepdisplay, inputs=[if_save_every_weights18], outputs=[save_epoch10])
|
|
|
|
but3.click(
|
|
click_train,
|
|
[
|
|
exp_dir1,
|
|
sr2,
|
|
if_f0_3,
|
|
spk_id5,
|
|
save_epoch10,
|
|
total_epoch11,
|
|
batch_size12,
|
|
if_save_latest13,
|
|
pretrained_G14,
|
|
pretrained_D15,
|
|
gpus16,
|
|
if_cache_gpu17,
|
|
if_save_every_weights18,
|
|
version19,
|
|
],
|
|
[info3, butstop, but3],
|
|
)
|
|
|
|
but4.click(train_index, [exp_dir1, version19], info3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.TabItem(i18n("ckpt处理")):
|
|
with gr.Group():
|
|
gr.Markdown(value=i18n("模型融合, 可用于测试音色融合"))
|
|
with gr.Row():
|
|
ckpt_a = gr.Textbox(label=i18n("A模型路径"), value="", interactive=True, placeholder="Path to your model A.")
|
|
ckpt_b = gr.Textbox(label=i18n("B模型路径"), value="", interactive=True, placeholder="Path to your model B.")
|
|
alpha_a = gr.Slider(
|
|
minimum=0,
|
|
maximum=1,
|
|
label=i18n("A模型权重"),
|
|
value=0.5,
|
|
interactive=True,
|
|
)
|
|
with gr.Row():
|
|
sr_ = gr.Radio(
|
|
label=i18n("目标采样率"),
|
|
choices=["40k", "48k"],
|
|
value="40k",
|
|
interactive=True,
|
|
)
|
|
if_f0_ = gr.Checkbox(
|
|
label="Whether the model has pitch guidance.",
|
|
value=True,
|
|
interactive=True,
|
|
)
|
|
info__ = gr.Textbox(
|
|
label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True, placeholder="Model information to be placed."
|
|
)
|
|
name_to_save0 = gr.Textbox(
|
|
label=i18n("保存的模型名不带后缀"),
|
|
value="",
|
|
placeholder="Name for saving.",
|
|
max_lines=1,
|
|
interactive=True,
|
|
)
|
|
version_2 = gr.Radio(
|
|
label=i18n("模型版本型号"),
|
|
choices=["v1", "v2"],
|
|
value="v1",
|
|
interactive=True,
|
|
)
|
|
with gr.Row():
|
|
but6 = gr.Button(i18n("融合"), variant="primary")
|
|
info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
|
but6.click(
|
|
merge,
|
|
[
|
|
ckpt_a,
|
|
ckpt_b,
|
|
alpha_a,
|
|
sr_,
|
|
if_f0_,
|
|
info__,
|
|
name_to_save0,
|
|
version_2,
|
|
],
|
|
info4,
|
|
)
|
|
with gr.Group():
|
|
gr.Markdown(value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)"))
|
|
with gr.Row():
|
|
ckpt_path0 = gr.Textbox(
|
|
label=i18n("模型路径"), placeholder="Path to your Model.", value="", interactive=True
|
|
)
|
|
info_ = gr.Textbox(
|
|
label=i18n("要改的模型信息"), value="", max_lines=8, interactive=True, placeholder="Model information to be changed."
|
|
)
|
|
name_to_save1 = gr.Textbox(
|
|
label=i18n("保存的文件名, 默认空为和源文件同名"),
|
|
placeholder="Either leave empty or put in the Name of the Model to be saved.",
|
|
value="",
|
|
max_lines=8,
|
|
interactive=True,
|
|
)
|
|
with gr.Row():
|
|
but7 = gr.Button(i18n("修改"), variant="primary")
|
|
info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
|
but7.click(change_info, [ckpt_path0, info_, name_to_save1], info5)
|
|
with gr.Group():
|
|
gr.Markdown(value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)"))
|
|
with gr.Row():
|
|
ckpt_path1 = gr.Textbox(
|
|
label=i18n("模型路径"), value="", interactive=True, placeholder="Model path here."
|
|
)
|
|
but8 = gr.Button(i18n("查看"), variant="primary")
|
|
info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
|
but8.click(show_info, [ckpt_path1], info6)
|
|
with gr.Group():
|
|
gr.Markdown(
|
|
value=i18n(
|
|
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况"
|
|
)
|
|
)
|
|
with gr.Row():
|
|
ckpt_path2 = gr.Textbox(
|
|
lines=3,
|
|
label=i18n("模型路径"),
|
|
value=os.path.abspath(os.getcwd()).replace('\\', '/') + "/logs/[YOUR_MODEL]/G_23333.pth",
|
|
interactive=True,
|
|
)
|
|
save_name = gr.Textbox(
|
|
label=i18n("保存名"), value="", interactive=True,
|
|
placeholder="Your filename here.",
|
|
)
|
|
sr__ = gr.Radio(
|
|
label=i18n("目标采样率"),
|
|
choices=["32k", "40k", "48k"],
|
|
value="40k",
|
|
interactive=True,
|
|
)
|
|
if_f0__ = gr.Checkbox(
|
|
label="Whether the model has pitch guidance.",
|
|
value=True,
|
|
interactive=True,
|
|
)
|
|
version_1 = gr.Radio(
|
|
label=i18n("模型版本型号"),
|
|
choices=["v1", "v2"],
|
|
value="v2",
|
|
interactive=True,
|
|
)
|
|
info___ = gr.Textbox(
|
|
label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True, placeholder="Model info here."
|
|
)
|
|
but9 = gr.Button(i18n("提取"), variant="primary")
|
|
info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
|
ckpt_path2.change(
|
|
change_info_, [ckpt_path2], [sr__, if_f0__, version_1]
|
|
)
|
|
but9.click(
|
|
extract_small_model,
|
|
[ckpt_path2, save_name, sr__, if_f0__, info___, version_1],
|
|
info7,
|
|
)
|
|
|
|
with gr.TabItem(i18n("Onnx导出")):
|
|
with gr.Row():
|
|
ckpt_dir = gr.Textbox(label=i18n("RVC模型路径"), value="", interactive=True, placeholder="RVC model path.")
|
|
with gr.Row():
|
|
onnx_dir = gr.Textbox(
|
|
label=i18n("Onnx输出路径"), value="", interactive=True, placeholder="Onnx model output path."
|
|
)
|
|
with gr.Row():
|
|
infoOnnx = gr.Label(label="info")
|
|
with gr.Row():
|
|
butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary")
|
|
butOnnx.click(export_onnx, [ckpt_dir, onnx_dir], infoOnnx)
|
|
|
|
tab_faq = i18n("常见问题解答")
|
|
with gr.TabItem(tab_faq):
|
|
try:
|
|
if tab_faq == "常见问题解答":
|
|
with open("docs/faq.md", "r", encoding="utf8") as f:
|
|
info = f.read()
|
|
else:
|
|
with open("docs/faq_en.md", "r", encoding="utf8") as f:
|
|
info = f.read()
|
|
gr.Markdown(value=info)
|
|
except:
|
|
gr.Markdown(traceback.format_exc())
|
|
|
|
|
|
|
|
def save_preset(
|
|
preset_name,
|
|
sid0,
|
|
vc_transform,
|
|
input_audio0,
|
|
input_audio1,
|
|
f0method,
|
|
crepe_hop_length,
|
|
filter_radius,
|
|
file_index1,
|
|
file_index2,
|
|
index_rate,
|
|
resample_sr,
|
|
rms_mix_rate,
|
|
protect,
|
|
f0_file
|
|
):
|
|
data = None
|
|
with open('../inference-presets.json', 'r') as file:
|
|
data = json.load(file)
|
|
preset_json = {
|
|
'name': preset_name,
|
|
'model': sid0,
|
|
'transpose': vc_transform,
|
|
'audio_file': input_audio0,
|
|
'auto_audio_file': input_audio1,
|
|
'f0_method': f0method,
|
|
'crepe_hop_length': crepe_hop_length,
|
|
'median_filtering': filter_radius,
|
|
'feature_path': file_index1,
|
|
'auto_feature_path': file_index2,
|
|
'search_feature_ratio': index_rate,
|
|
'resample': resample_sr,
|
|
'volume_envelope': rms_mix_rate,
|
|
'protect_voiceless': protect,
|
|
'f0_file_path': f0_file
|
|
}
|
|
data['presets'].append(preset_json)
|
|
with open('../inference-presets.json', 'w') as file:
|
|
json.dump(data, file)
|
|
file.flush()
|
|
print("Saved Preset %s into inference-presets.json!" % preset_name)
|
|
|
|
|
|
def on_preset_changed(preset_name):
|
|
print("Changed Preset to %s!" % preset_name)
|
|
data = None
|
|
with open('../inference-presets.json', 'r') as file:
|
|
data = json.load(file)
|
|
|
|
print("Searching for " + preset_name)
|
|
returning_preset = None
|
|
for preset in data['presets']:
|
|
if(preset['name'] == preset_name):
|
|
print("Found a preset")
|
|
returning_preset = preset
|
|
|
|
return (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if config.iscolab or config.paperspace:
|
|
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
|
else:
|
|
app.queue(concurrency_count=511, max_size=1022).launch(
|
|
server_name="0.0.0.0",
|
|
inbrowser=not config.noautoopen,
|
|
server_port=config.listen_port,
|
|
quiet=False,
|
|
)
|
|
|
|
|
|
|