File size: 2,873 Bytes
71c048d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter8_sftsd0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# collapse_gemma-2-2b_hs2_accumulatesubsample_iter8_sftsd0

This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1876
- Num Input Tokens Seen: 5050984

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 0
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log        | 0      | 0    | 1.3909          | 0                 |
| 1.3991        | 0.0543 | 5    | 1.2725          | 268768            |
| 1.1703        | 0.1086 | 10   | 1.1974          | 544736            |
| 1.0865        | 0.1629 | 15   | 1.1898          | 814424            |
| 1.0812        | 0.2172 | 20   | 1.1993          | 1093688           |
| 0.8983        | 0.2716 | 25   | 1.2050          | 1373160           |
| 0.8093        | 0.3259 | 30   | 1.2215          | 1647872           |
| 0.734         | 0.3802 | 35   | 1.2129          | 1921464           |
| 0.6783        | 0.4345 | 40   | 1.2141          | 2206248           |
| 0.5858        | 0.4888 | 45   | 1.2226          | 2476264           |
| 0.6223        | 0.5431 | 50   | 1.2036          | 2753528           |
| 0.7186        | 0.5974 | 55   | 1.1927          | 3034280           |
| 0.452         | 0.6517 | 60   | 1.2088          | 3302232           |
| 0.5381        | 0.7060 | 65   | 1.1925          | 3575192           |
| 0.6065        | 0.7604 | 70   | 1.1956          | 3848736           |
| 0.5219        | 0.8147 | 75   | 1.1899          | 4125440           |
| 0.4986        | 0.8690 | 80   | 1.1895          | 4392672           |
| 0.4997        | 0.9233 | 85   | 1.1895          | 4661944           |
| 0.5353        | 0.9776 | 90   | 1.1928          | 4941648           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1