--- license: gemma base_model: google/gemma-2-2b tags: - trl - sft - generated_from_trainer model-index: - name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter17_sftsd0 results: [] --- # collapse_gemma-2-2b_hs2_accumulatesubsample_iter17_sftsd0 This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2165 - Num Input Tokens Seen: 4964320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 0 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | No log | 0 | 0 | 1.3909 | 0 | | 1.2726 | 0.0535 | 5 | 1.2797 | 261768 | | 1.1191 | 0.1070 | 10 | 1.2274 | 527656 | | 0.9603 | 0.1605 | 15 | 1.2346 | 792592 | | 0.7861 | 0.2140 | 20 | 1.2535 | 1060392 | | 0.7055 | 0.2676 | 25 | 1.2497 | 1331816 | | 0.6513 | 0.3211 | 30 | 1.2599 | 1600048 | | 0.6785 | 0.3746 | 35 | 1.2513 | 1862592 | | 0.5816 | 0.4281 | 40 | 1.2579 | 2132648 | | 0.5033 | 0.4816 | 45 | 1.2418 | 2397080 | | 0.4926 | 0.5351 | 50 | 1.2292 | 2665584 | | 0.5115 | 0.5886 | 55 | 1.2360 | 2939440 | | 0.395 | 0.6421 | 60 | 1.2264 | 3206336 | | 0.4836 | 0.6957 | 65 | 1.2312 | 3475784 | | 0.4008 | 0.7492 | 70 | 1.2145 | 3740448 | | 0.4104 | 0.8027 | 75 | 1.2251 | 4008264 | | 0.4466 | 0.8562 | 80 | 1.2196 | 4277008 | | 0.3173 | 0.9097 | 85 | 1.2176 | 4540200 | | 0.4054 | 0.9632 | 90 | 1.2160 | 4799696 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1