--- library_name: transformers license: agpl-3.0 base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: PhishLang_PhoBERTCNN_10k results: [] --- # PhishLang_PhoBERTCNN_10k This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3681 - Accuracy: 0.9075 - F1: 0.9064 - Precision: 0.9103 - Recall: 0.9044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6931 | 0.8 | 100 | 0.4079 | 0.8915 | 0.8893 | 0.9001 | 0.8859 | | 0.6931 | 1.6 | 200 | 0.3679 | 0.9055 | 0.9041 | 0.9102 | 0.9015 | | 0.4782 | 2.4 | 300 | 0.3651 | 0.9015 | 0.9004 | 0.9032 | 0.8989 | | 0.4782 | 3.2 | 400 | 0.3533 | 0.908 | 0.9070 | 0.9101 | 0.9052 | | 0.3495 | 4.0 | 500 | 0.3650 | 0.9085 | 0.9068 | 0.9160 | 0.9036 | | 0.3495 | 4.8 | 600 | 0.3562 | 0.9115 | 0.9102 | 0.9164 | 0.9075 | | 0.3495 | 5.6 | 700 | 0.3595 | 0.905 | 0.9042 | 0.9052 | 0.9035 | | 0.3147 | 6.4 | 800 | 0.3666 | 0.902 | 0.9013 | 0.9018 | 0.9009 | | 0.3147 | 7.2 | 900 | 0.3666 | 0.911 | 0.9097 | 0.9154 | 0.9072 | | 0.2962 | 8.0 | 1000 | 0.3618 | 0.908 | 0.9070 | 0.9097 | 0.9055 | | 0.2962 | 8.8 | 1100 | 0.3680 | 0.9095 | 0.9083 | 0.9127 | 0.9062 | | 0.2962 | 9.6 | 1200 | 0.3681 | 0.9075 | 0.9064 | 0.9103 | 0.9044 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.21.0