--- license: agpl-3.0 base_model: - Ultralytics/YOLO11 pipeline_tag: image-classification datasets: - Rokyuto/Banknotes tags: - yolov11 - banknotes - banknotes classification widget: - text: Banknotes Classification output: url: model_predictions/prediction_50 EUR_20240923_190943.jpg model-index: - name: banknotes-recognizer results: - task: type: object-classification dataset: type: banknotes name: Banknotes metrics: - type: precision name: Precision value: 0.976 - type: recall name: Recall value: 0.974 - type: mAP50 name: mAP50 value: 0.991 - type: mAP50-95 name: mAP50-95 value: 0.789 ---
Output Example
Model Metrics YOLO11m summary (fused): 303 layers, 20,037,742 parameters, 0 gradients, 67.7 GFLOPs | Class | Images | Instances | Box(P) | R | mAP50 | mAP50-95) | |--------|--------|-----------|---------|-------|-------|----------| | all | 110 | 256 | 0.969 | 0.977 | 0.989 | 0.801 | | 5 BGN | 10 | 35 | 0.969 | 0.9 | 0.975 | 0.712 | | 10 BGN | 9 | 29 | 0.96 | 1 | 0.976 | 0.773 | | 20 BGN | 7 | 25 | 0.996 | 0.96 | 0.993 | 0.795 | | 50 BGN | 7 | 24 | 0.996 | 0.966 | 0.989 | 0.801 | | 100 BGN| 13 | 41 | 0.975 | 0.955 | 0.982 | 0.823 | | 5 EUR | 18 | 19 | 0.863 | 0.991 | 0.986 | 0.837 | | 10 EUR | 14 | 38 | 0.998 | 1 | 0.995 | 0.787 | | 20 EUR | 15 | 15 | 0.986 | 1 | 0.995 | 0.861 | | 50 EUR | 7 | 7 | 0.97 | 1 | 0.995 | 0.920 | | 100 EUR| 10 | 23 | 0.97 | 1 | 0.995 | 0.675 |
Results Confusion Matrix Normalized Labels F1 curve P curve R curve PR curve