Model save
Browse files- README.md +102 -0
- tb/events.out.tfevents.1725907965.3d77e24b7860.2139.0 +2 -2
- train.log +13 -0
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: michiyasunaga/BioLinkBERT-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- drugtemist-en-fasttext-9-ner
|
9 |
+
metrics:
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
- accuracy
|
14 |
+
model-index:
|
15 |
+
- name: output
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Token Classification
|
19 |
+
type: token-classification
|
20 |
+
dataset:
|
21 |
+
name: drugtemist-en-fasttext-9-ner
|
22 |
+
type: drugtemist-en-fasttext-9-ner
|
23 |
+
config: DrugTEMIST English NER
|
24 |
+
split: validation
|
25 |
+
args: DrugTEMIST English NER
|
26 |
+
metrics:
|
27 |
+
- name: Precision
|
28 |
+
type: precision
|
29 |
+
value: 0.9311627906976744
|
30 |
+
- name: Recall
|
31 |
+
type: recall
|
32 |
+
value: 0.9328984156570364
|
33 |
+
- name: F1
|
34 |
+
type: f1
|
35 |
+
value: 0.9320297951582869
|
36 |
+
- name: Accuracy
|
37 |
+
type: accuracy
|
38 |
+
value: 0.998772081600759
|
39 |
+
---
|
40 |
+
|
41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
+
should probably proofread and complete it, then remove this comment. -->
|
43 |
+
|
44 |
+
# output
|
45 |
+
|
46 |
+
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the drugtemist-en-fasttext-9-ner dataset.
|
47 |
+
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.0071
|
49 |
+
- Precision: 0.9312
|
50 |
+
- Recall: 0.9329
|
51 |
+
- F1: 0.9320
|
52 |
+
- Accuracy: 0.9988
|
53 |
+
|
54 |
+
## Model description
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Intended uses & limitations
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training hyperparameters
|
69 |
+
|
70 |
+
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 5e-05
|
72 |
+
- train_batch_size: 32
|
73 |
+
- eval_batch_size: 8
|
74 |
+
- seed: 42
|
75 |
+
- gradient_accumulation_steps: 2
|
76 |
+
- total_train_batch_size: 64
|
77 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
78 |
+
- lr_scheduler_type: linear
|
79 |
+
- num_epochs: 10.0
|
80 |
+
|
81 |
+
### Training results
|
82 |
+
|
83 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
84 |
+
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
85 |
+
| No log | 0.9989 | 435 | 0.0060 | 0.8714 | 0.9217 | 0.8958 | 0.9981 |
|
86 |
+
| 0.0156 | 2.0 | 871 | 0.0044 | 0.9183 | 0.9217 | 0.92 | 0.9987 |
|
87 |
+
| 0.0038 | 2.9989 | 1306 | 0.0040 | 0.8969 | 0.9404 | 0.9181 | 0.9987 |
|
88 |
+
| 0.0025 | 4.0 | 1742 | 0.0045 | 0.9078 | 0.9357 | 0.9215 | 0.9986 |
|
89 |
+
| 0.0016 | 4.9989 | 2177 | 0.0054 | 0.9182 | 0.9096 | 0.9139 | 0.9986 |
|
90 |
+
| 0.0011 | 6.0 | 2613 | 0.0053 | 0.9152 | 0.9254 | 0.9203 | 0.9986 |
|
91 |
+
| 0.0009 | 6.9989 | 3048 | 0.0060 | 0.9263 | 0.9366 | 0.9314 | 0.9987 |
|
92 |
+
| 0.0009 | 8.0 | 3484 | 0.0059 | 0.9181 | 0.9404 | 0.9291 | 0.9988 |
|
93 |
+
| 0.0005 | 8.9989 | 3919 | 0.0067 | 0.9258 | 0.9301 | 0.9279 | 0.9988 |
|
94 |
+
| 0.0003 | 9.9885 | 4350 | 0.0071 | 0.9312 | 0.9329 | 0.9320 | 0.9988 |
|
95 |
+
|
96 |
+
|
97 |
+
### Framework versions
|
98 |
+
|
99 |
+
- Transformers 4.44.2
|
100 |
+
- Pytorch 2.4.0+cu121
|
101 |
+
- Datasets 2.21.0
|
102 |
+
- Tokenizers 0.19.1
|
tb/events.out.tfevents.1725907965.3d77e24b7860.2139.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14b07a62348548449de69186f75d068b534a5f40b745fb2aaff56f5511f88a8b
|
3 |
+
size 11883
|
train.log
CHANGED
@@ -1413,3 +1413,16 @@ Training completed. Do not forget to share your model on huggingface.co/models =
|
|
1413 |
[INFO|trainer.py:2632] 2024-09-09 19:22:55,109 >> Loading best model from /content/dissertation/scripts/ner/output/checkpoint-4350 (score: 0.9320297951582869).
|
1414 |
|
1415 |
|
1416 |
[INFO|trainer.py:4283] 2024-09-09 19:22:55,259 >> Waiting for the current checkpoint push to be finished, this might take a couple of minutes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1413 |
[INFO|trainer.py:2632] 2024-09-09 19:22:55,109 >> Loading best model from /content/dissertation/scripts/ner/output/checkpoint-4350 (score: 0.9320297951582869).
|
1414 |
|
1415 |
|
1416 |
[INFO|trainer.py:4283] 2024-09-09 19:22:55,259 >> Waiting for the current checkpoint push to be finished, this might take a couple of minutes.
|
1417 |
+
[INFO|trainer.py:3503] 2024-09-09 19:23:03,508 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
|
1418 |
+
[INFO|configuration_utils.py:472] 2024-09-09 19:23:03,510 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
|
1419 |
+
[INFO|modeling_utils.py:2799] 2024-09-09 19:23:04,785 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
|
1420 |
+
[INFO|tokenization_utils_base.py:2684] 2024-09-09 19:23:04,786 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
|
1421 |
+
[INFO|tokenization_utils_base.py:2693] 2024-09-09 19:23:04,786 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
|
1422 |
+
[INFO|trainer.py:3503] 2024-09-09 19:23:04,799 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
|
1423 |
+
[INFO|configuration_utils.py:472] 2024-09-09 19:23:04,800 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
|
1424 |
+
[INFO|modeling_utils.py:2799] 2024-09-09 19:23:05,818 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
|
1425 |
+
[INFO|tokenization_utils_base.py:2684] 2024-09-09 19:23:05,819 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
|
1426 |
+
[INFO|tokenization_utils_base.py:2693] 2024-09-09 19:23:05,819 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
|
1427 |
+
{'eval_loss': 0.007080046460032463, 'eval_precision': 0.9311627906976744, 'eval_recall': 0.9328984156570364, 'eval_f1': 0.9320297951582869, 'eval_accuracy': 0.998772081600759, 'eval_runtime': 15.2679, 'eval_samples_per_second': 454.941, 'eval_steps_per_second': 56.917, 'epoch': 9.99}
|
1428 |
+
{'train_runtime': 1809.5975, 'train_samples_per_second': 153.852, 'train_steps_per_second': 2.404, 'train_loss': 0.003044272955806776, 'epoch': 9.99}
|
1429 |
+
|