Rodrigo1771 commited on
Commit
3bbe62f
·
verified ·
1 Parent(s): 26f102e

Model save

Browse files
README.md ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: michiyasunaga/BioLinkBERT-base
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - drugtemist-en-fasttext-9-ner
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: output
16
+ results:
17
+ - task:
18
+ name: Token Classification
19
+ type: token-classification
20
+ dataset:
21
+ name: drugtemist-en-fasttext-9-ner
22
+ type: drugtemist-en-fasttext-9-ner
23
+ config: DrugTEMIST English NER
24
+ split: validation
25
+ args: DrugTEMIST English NER
26
+ metrics:
27
+ - name: Precision
28
+ type: precision
29
+ value: 0.9311627906976744
30
+ - name: Recall
31
+ type: recall
32
+ value: 0.9328984156570364
33
+ - name: F1
34
+ type: f1
35
+ value: 0.9320297951582869
36
+ - name: Accuracy
37
+ type: accuracy
38
+ value: 0.998772081600759
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # output
45
+
46
+ This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the drugtemist-en-fasttext-9-ner dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.0071
49
+ - Precision: 0.9312
50
+ - Recall: 0.9329
51
+ - F1: 0.9320
52
+ - Accuracy: 0.9988
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 5e-05
72
+ - train_batch_size: 32
73
+ - eval_batch_size: 8
74
+ - seed: 42
75
+ - gradient_accumulation_steps: 2
76
+ - total_train_batch_size: 64
77
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
78
+ - lr_scheduler_type: linear
79
+ - num_epochs: 10.0
80
+
81
+ ### Training results
82
+
83
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
84
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
85
+ | No log | 0.9989 | 435 | 0.0060 | 0.8714 | 0.9217 | 0.8958 | 0.9981 |
86
+ | 0.0156 | 2.0 | 871 | 0.0044 | 0.9183 | 0.9217 | 0.92 | 0.9987 |
87
+ | 0.0038 | 2.9989 | 1306 | 0.0040 | 0.8969 | 0.9404 | 0.9181 | 0.9987 |
88
+ | 0.0025 | 4.0 | 1742 | 0.0045 | 0.9078 | 0.9357 | 0.9215 | 0.9986 |
89
+ | 0.0016 | 4.9989 | 2177 | 0.0054 | 0.9182 | 0.9096 | 0.9139 | 0.9986 |
90
+ | 0.0011 | 6.0 | 2613 | 0.0053 | 0.9152 | 0.9254 | 0.9203 | 0.9986 |
91
+ | 0.0009 | 6.9989 | 3048 | 0.0060 | 0.9263 | 0.9366 | 0.9314 | 0.9987 |
92
+ | 0.0009 | 8.0 | 3484 | 0.0059 | 0.9181 | 0.9404 | 0.9291 | 0.9988 |
93
+ | 0.0005 | 8.9989 | 3919 | 0.0067 | 0.9258 | 0.9301 | 0.9279 | 0.9988 |
94
+ | 0.0003 | 9.9885 | 4350 | 0.0071 | 0.9312 | 0.9329 | 0.9320 | 0.9988 |
95
+
96
+
97
+ ### Framework versions
98
+
99
+ - Transformers 4.44.2
100
+ - Pytorch 2.4.0+cu121
101
+ - Datasets 2.21.0
102
+ - Tokenizers 0.19.1
tb/events.out.tfevents.1725907965.3d77e24b7860.2139.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e0c6d45e4dd1301f179795387e2c7176810031e03dd91668cdfe33f7c66c3a40
3
- size 11057
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14b07a62348548449de69186f75d068b534a5f40b745fb2aaff56f5511f88a8b
3
+ size 11883
train.log CHANGED
@@ -1413,3 +1413,16 @@ Training completed. Do not forget to share your model on huggingface.co/models =
1413
  [INFO|trainer.py:2632] 2024-09-09 19:22:55,109 >> Loading best model from /content/dissertation/scripts/ner/output/checkpoint-4350 (score: 0.9320297951582869).
1414
 
1415
 
1416
  [INFO|trainer.py:4283] 2024-09-09 19:22:55,259 >> Waiting for the current checkpoint push to be finished, this might take a couple of minutes.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413
  [INFO|trainer.py:2632] 2024-09-09 19:22:55,109 >> Loading best model from /content/dissertation/scripts/ner/output/checkpoint-4350 (score: 0.9320297951582869).
1414
 
1415
 
1416
  [INFO|trainer.py:4283] 2024-09-09 19:22:55,259 >> Waiting for the current checkpoint push to be finished, this might take a couple of minutes.
1417
+ [INFO|trainer.py:3503] 2024-09-09 19:23:03,508 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
1418
+ [INFO|configuration_utils.py:472] 2024-09-09 19:23:03,510 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
1419
+ [INFO|modeling_utils.py:2799] 2024-09-09 19:23:04,785 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
1420
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 19:23:04,786 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
1421
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 19:23:04,786 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
1422
+ [INFO|trainer.py:3503] 2024-09-09 19:23:04,799 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
1423
+ [INFO|configuration_utils.py:472] 2024-09-09 19:23:04,800 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
1424
+ [INFO|modeling_utils.py:2799] 2024-09-09 19:23:05,818 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
1425
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 19:23:05,819 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
1426
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 19:23:05,819 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
1427
+ {'eval_loss': 0.007080046460032463, 'eval_precision': 0.9311627906976744, 'eval_recall': 0.9328984156570364, 'eval_f1': 0.9320297951582869, 'eval_accuracy': 0.998772081600759, 'eval_runtime': 15.2679, 'eval_samples_per_second': 454.941, 'eval_steps_per_second': 56.917, 'epoch': 9.99}
1428
+ {'train_runtime': 1809.5975, 'train_samples_per_second': 153.852, 'train_steps_per_second': 2.404, 'train_loss': 0.003044272955806776, 'epoch': 9.99}
1429
+