--- library_name: transformers license: apache-2.0 base_model: PlanTL-GOB-ES/bsc-bio-ehr-es tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/symptemist-fasttext-9-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/symptemist-fasttext-9-ner type: Rodrigo1771/symptemist-fasttext-9-ner config: SympTEMIST NER split: validation args: SympTEMIST NER metrics: - name: Precision type: precision value: 0.6659969864389754 - name: Recall type: recall value: 0.7257799671592775 - name: F1 type: f1 value: 0.6946045049764275 - name: Accuracy type: accuracy value: 0.9496615226667522 --- # output This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/symptemist-fasttext-9-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.2450 - Precision: 0.6660 - Recall: 0.7258 - F1: 0.6946 - Accuracy: 0.9497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9968 | 155 | 0.1485 | 0.5669 | 0.6218 | 0.5931 | 0.9436 | | No log | 2.0 | 311 | 0.1609 | 0.5623 | 0.7159 | 0.6299 | 0.9409 | | No log | 2.9968 | 466 | 0.1635 | 0.6210 | 0.7219 | 0.6677 | 0.9487 | | 0.1246 | 4.0 | 622 | 0.2047 | 0.6659 | 0.6765 | 0.6712 | 0.9493 | | 0.1246 | 4.9968 | 777 | 0.2134 | 0.6562 | 0.7115 | 0.6828 | 0.9480 | | 0.1246 | 6.0 | 933 | 0.2259 | 0.6518 | 0.7099 | 0.6796 | 0.9494 | | 0.0242 | 6.9968 | 1088 | 0.2450 | 0.6660 | 0.7258 | 0.6946 | 0.9497 | | 0.0242 | 8.0 | 1244 | 0.2650 | 0.6491 | 0.7230 | 0.6841 | 0.9491 | | 0.0242 | 8.9968 | 1399 | 0.2745 | 0.6646 | 0.7126 | 0.6878 | 0.9498 | | 0.0083 | 9.9678 | 1550 | 0.2774 | 0.6628 | 0.7187 | 0.6896 | 0.9503 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1