|
2024-09-09 12:49:35.169739: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. |
|
2024-09-09 12:49:35.188435: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered |
|
2024-09-09 12:49:35.210470: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered |
|
2024-09-09 12:49:35.217107: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered |
|
2024-09-09 12:49:35.233109: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. |
|
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. |
|
2024-09-09 12:49:36.523400: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT |
|
/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of π€ Transformers. Use `eval_strategy` instead |
|
warnings.warn( |
|
09/09/2024 12:49:38 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False |
|
09/09/2024 12:49:38 - INFO - __main__ - Training/evaluation parameters TrainingArguments( |
|
_n_gpu=1, |
|
accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, |
|
adafactor=False, |
|
adam_beta1=0.9, |
|
adam_beta2=0.999, |
|
adam_epsilon=1e-08, |
|
auto_find_batch_size=False, |
|
batch_eval_metrics=False, |
|
bf16=False, |
|
bf16_full_eval=False, |
|
data_seed=None, |
|
dataloader_drop_last=False, |
|
dataloader_num_workers=0, |
|
dataloader_persistent_workers=False, |
|
dataloader_pin_memory=True, |
|
dataloader_prefetch_factor=None, |
|
ddp_backend=None, |
|
ddp_broadcast_buffers=None, |
|
ddp_bucket_cap_mb=None, |
|
ddp_find_unused_parameters=None, |
|
ddp_timeout=1800, |
|
debug=[], |
|
deepspeed=None, |
|
disable_tqdm=False, |
|
dispatch_batches=None, |
|
do_eval=True, |
|
do_predict=True, |
|
do_train=True, |
|
eval_accumulation_steps=None, |
|
eval_delay=0, |
|
eval_do_concat_batches=True, |
|
eval_on_start=False, |
|
eval_steps=None, |
|
eval_strategy=epoch, |
|
eval_use_gather_object=False, |
|
evaluation_strategy=epoch, |
|
fp16=False, |
|
fp16_backend=auto, |
|
fp16_full_eval=False, |
|
fp16_opt_level=O1, |
|
fsdp=[], |
|
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, |
|
fsdp_min_num_params=0, |
|
fsdp_transformer_layer_cls_to_wrap=None, |
|
full_determinism=False, |
|
gradient_accumulation_steps=2, |
|
gradient_checkpointing=False, |
|
gradient_checkpointing_kwargs=None, |
|
greater_is_better=True, |
|
group_by_length=False, |
|
half_precision_backend=auto, |
|
hub_always_push=False, |
|
hub_model_id=None, |
|
hub_private_repo=False, |
|
hub_strategy=every_save, |
|
hub_token=<HUB_TOKEN>, |
|
ignore_data_skip=False, |
|
include_inputs_for_metrics=False, |
|
include_num_input_tokens_seen=False, |
|
include_tokens_per_second=False, |
|
jit_mode_eval=False, |
|
label_names=None, |
|
label_smoothing_factor=0.0, |
|
learning_rate=5e-05, |
|
length_column_name=length, |
|
load_best_model_at_end=True, |
|
local_rank=0, |
|
log_level=passive, |
|
log_level_replica=warning, |
|
log_on_each_node=True, |
|
logging_dir=/content/dissertation/scripts/ner/output/tb, |
|
logging_first_step=False, |
|
logging_nan_inf_filter=True, |
|
logging_steps=500, |
|
logging_strategy=steps, |
|
lr_scheduler_kwargs={}, |
|
lr_scheduler_type=linear, |
|
max_grad_norm=1.0, |
|
max_steps=-1, |
|
metric_for_best_model=f1, |
|
mp_parameters=, |
|
neftune_noise_alpha=None, |
|
no_cuda=False, |
|
num_train_epochs=10.0, |
|
optim=adamw_torch, |
|
optim_args=None, |
|
optim_target_modules=None, |
|
output_dir=/content/dissertation/scripts/ner/output, |
|
overwrite_output_dir=True, |
|
past_index=-1, |
|
per_device_eval_batch_size=8, |
|
per_device_train_batch_size=32, |
|
prediction_loss_only=False, |
|
push_to_hub=True, |
|
push_to_hub_model_id=None, |
|
push_to_hub_organization=None, |
|
push_to_hub_token=<PUSH_TO_HUB_TOKEN>, |
|
ray_scope=last, |
|
remove_unused_columns=True, |
|
report_to=['tensorboard'], |
|
restore_callback_states_from_checkpoint=False, |
|
resume_from_checkpoint=None, |
|
run_name=/content/dissertation/scripts/ner/output, |
|
save_on_each_node=False, |
|
save_only_model=False, |
|
save_safetensors=True, |
|
save_steps=500, |
|
save_strategy=epoch, |
|
save_total_limit=None, |
|
seed=42, |
|
skip_memory_metrics=True, |
|
split_batches=None, |
|
tf32=None, |
|
torch_compile=False, |
|
torch_compile_backend=None, |
|
torch_compile_mode=None, |
|
torch_empty_cache_steps=None, |
|
torchdynamo=None, |
|
tpu_metrics_debug=False, |
|
tpu_num_cores=None, |
|
use_cpu=False, |
|
use_ipex=False, |
|
use_legacy_prediction_loop=False, |
|
use_mps_device=False, |
|
warmup_ratio=0.0, |
|
warmup_steps=0, |
|
weight_decay=0.0, |
|
) |
|
Downloading builder script: 0%| | 0.00/3.62k [00:00<?, ?B/s]
Downloading builder script: 100%|ββββββββββ| 3.62k/3.62k [00:00<00:00, 15.3kB/s]
Downloading builder script: 100%|ββββββββββ| 3.62k/3.62k [00:00<00:00, 15.3kB/s] |
|
Downloading data: 0%| | 0.00/33.9M [00:00<?, ?B/s]
Downloading data: 31%|βββ | 10.5M/33.9M [00:00<00:02, 10.5MB/s]
Downloading data: 62%|βββββββ | 21.0M/33.9M [00:01<00:00, 15.9MB/s]
Downloading data: 93%|ββββββββββ| 31.5M/33.9M [00:01<00:00, 18.7MB/s]
Downloading data: 100%|ββββββββββ| 33.9M/33.9M [00:01<00:00, 17.8MB/s] |
|
Downloading data: 0%| | 0.00/6.66M [00:00<?, ?B/s]
Downloading data: 100%|ββββββββββ| 6.66M/6.66M [00:00<00:00, 7.41MB/s]
Downloading data: 100%|ββββββββββ| 6.66M/6.66M [00:00<00:00, 7.36MB/s] |
|
Downloading data: 0%| | 0.00/12.0M [00:00<?, ?B/s]
Downloading data: 87%|βββββββββ | 10.5M/12.0M [00:01<00:00, 8.44MB/s]
Downloading data: 100%|ββββββββββ| 12.0M/12.0M [00:01<00:00, 9.56MB/s] |
|
Generating train split: 0 examples [00:00, ? examples/s]
Generating train split: 645 examples [00:00, 6422.99 examples/s]
Generating train split: 1585 examples [00:00, 6310.50 examples/s]
Generating train split: 2239 examples [00:00, 6396.54 examples/s]
Generating train split: 2942 examples [00:00, 6620.97 examples/s]
Generating train split: 3958 examples [00:00, 6683.92 examples/s]
Generating train split: 4976 examples [00:00, 6719.22 examples/s]
Generating train split: 5941 examples [00:00, 6616.84 examples/s]
Generating train split: 6894 examples [00:01, 6523.22 examples/s]
Generating train split: 7910 examples [00:01, 6602.52 examples/s]
Generating train split: 8903 examples [00:01, 6604.68 examples/s]
Generating train split: 9878 examples [00:01, 6568.43 examples/s]
Generating train split: 10839 examples [00:01, 6515.53 examples/s]
Generating train split: 11854 examples [00:01, 6589.56 examples/s]
Generating train split: 12845 examples [00:01, 6591.65 examples/s]
Generating train split: 13855 examples [00:02, 6626.64 examples/s]
Generating train split: 14832 examples [00:02, 6589.42 examples/s]
Generating train split: 15831 examples [00:02, 6606.16 examples/s]
Generating train split: 16856 examples [00:02, 6669.54 examples/s]
Generating train split: 17866 examples [00:02, 6684.58 examples/s]
Generating train split: 18853 examples [00:02, 6648.95 examples/s]
Generating train split: 19863 examples [00:03, 6672.36 examples/s]
Generating train split: 20537 examples [00:03, 6685.56 examples/s]
Generating train split: 21553 examples [00:03, 6712.14 examples/s]
Generating train split: 22557 examples [00:03, 6703.84 examples/s]
Generating train split: 23543 examples [00:03, 6658.95 examples/s]
Generating train split: 24494 examples [00:03, 6558.35 examples/s]
Generating train split: 25486 examples [00:03, 6571.56 examples/s]
Generating train split: 26448 examples [00:04, 6522.66 examples/s]
Generating train split: 27423 examples [00:04, 6510.51 examples/s]
Generating train split: 28421 examples [00:04, 6550.53 examples/s]
Generating train split: 29376 examples [00:04, 6485.54 examples/s]
Generating train split: 30240 examples [00:04, 4496.54 examples/s]
Generating train split: 30931 examples [00:04, 4904.64 examples/s]
Generating train split: 31559 examples [00:05, 5172.47 examples/s]
Generating train split: 32216 examples [00:05, 5474.88 examples/s]
Generating train split: 32447 examples [00:05, 6307.49 examples/s] |
|
Generating validation split: 0 examples [00:00, ? examples/s]
Generating validation split: 753 examples [00:00, 7503.26 examples/s]
Generating validation split: 1823 examples [00:00, 7241.51 examples/s]
Generating validation split: 2828 examples [00:00, 6970.53 examples/s]
Generating validation split: 3879 examples [00:00, 6983.17 examples/s]
Generating validation split: 4923 examples [00:00, 6965.65 examples/s]
Generating validation split: 5963 examples [00:00, 6947.29 examples/s]
Generating validation split: 6946 examples [00:00, 6916.82 examples/s]
Generating validation split: 6946 examples [00:01, 6918.93 examples/s] |
|
Generating test split: 0 examples [00:00, ? examples/s]
Generating test split: 837 examples [00:00, 8333.65 examples/s]
Generating test split: 1992 examples [00:00, 7893.19 examples/s]
Generating test split: 3118 examples [00:00, 7697.73 examples/s]
Generating test split: 3905 examples [00:00, 7750.41 examples/s]
Generating test split: 5029 examples [00:00, 7643.58 examples/s]
Generating test split: 5922 examples [00:00, 8001.63 examples/s]
Generating test split: 6745 examples [00:00, 8065.26 examples/s]
Generating test split: 7957 examples [00:01, 8066.19 examples/s]
Generating test split: 9088 examples [00:01, 7878.75 examples/s]
Generating test split: 10230 examples [00:01, 7788.78 examples/s]
Generating test split: 11023 examples [00:01, 7817.04 examples/s]
Generating test split: 11883 examples [00:01, 8015.39 examples/s]
Generating test split: 12954 examples [00:01, 7696.61 examples/s]
Generating test split: 14049 examples [00:01, 7561.13 examples/s]
Generating test split: 14715 examples [00:01, 7754.44 examples/s] |
|
[INFO|configuration_utils.py:733] 2024-09-09 12:49:56,508 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/config.json |
|
[INFO|configuration_utils.py:800] 2024-09-09 12:49:56,512 >> Model config BertConfig { |
|
"_name_or_path": "michiyasunaga/BioLinkBERT-base", |
|
"architectures": [ |
|
"BertModel" |
|
], |
|
"attention_probs_dropout_prob": 0.1, |
|
"classifier_dropout": null, |
|
"finetuning_task": "ner", |
|
"gradient_checkpointing": false, |
|
"hidden_act": "gelu", |
|
"hidden_dropout_prob": 0.1, |
|
"hidden_size": 768, |
|
"id2label": { |
|
"0": "O", |
|
"1": "B-FARMACO", |
|
"2": "I-FARMACO" |
|
}, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 3072, |
|
"label2id": { |
|
"B-FARMACO": 1, |
|
"I-FARMACO": 2, |
|
"O": 0 |
|
}, |
|
"layer_norm_eps": 1e-12, |
|
"max_position_embeddings": 512, |
|
"model_type": "bert", |
|
"num_attention_heads": 12, |
|
"num_hidden_layers": 12, |
|
"pad_token_id": 0, |
|
"position_embedding_type": "absolute", |
|
"transformers_version": "4.44.2", |
|
"type_vocab_size": 2, |
|
"use_cache": true, |
|
"vocab_size": 28895 |
|
} |
|
|
|
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:49:58,923 >> loading file vocab.txt from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/vocab.txt |
|
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:49:58,923 >> loading file tokenizer.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/tokenizer.json |
|
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:49:58,923 >> loading file added_tokens.json from cache at None |
|
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:49:58,923 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/special_tokens_map.json |
|
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:49:58,923 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/tokenizer_config.json |
|
/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884 |
|
warnings.warn( |
|
[INFO|modeling_utils.py:3678] 2024-09-09 12:50:02,660 >> loading weights file pytorch_model.bin from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/pytorch_model.bin |
|
[INFO|modeling_utils.py:4497] 2024-09-09 12:50:02,740 >> Some weights of the model checkpoint at michiyasunaga/BioLinkBERT-base were not used when initializing BertForTokenClassification: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight'] |
|
- This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). |
|
- This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). |
|
[WARNING|modeling_utils.py:4509] 2024-09-09 12:50:02,740 >> Some weights of BertForTokenClassification were not initialized from the model checkpoint at michiyasunaga/BioLinkBERT-base and are newly initialized: ['classifier.bias', 'classifier.weight'] |
|
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. |
|
Map: 0%| | 0/32447 [00:00<?, ? examples/s]
Map: 3%|β | 1000/32447 [00:00<00:03, 9362.33 examples/s]
Map: 9%|β | 3000/32447 [00:00<00:02, 10280.00 examples/s]
Map: 15%|ββ | 5000/32447 [00:00<00:02, 10674.68 examples/s]
Map: 22%|βββ | 7000/32447 [00:00<00:02, 10414.12 examples/s]
Map: 28%|βββ | 9000/32447 [00:00<00:02, 10509.84 examples/s]
Map: 34%|ββββ | 11000/32447 [00:01<00:02, 10515.16 examples/s]
Map: 40%|ββββ | 13000/32447 [00:01<00:01, 10620.05 examples/s]
Map: 46%|βββββ | 15000/32447 [00:01<00:01, 10528.03 examples/s]
Map: 52%|ββββββ | 17000/32447 [00:01<00:01, 10624.94 examples/s]
Map: 59%|ββββββ | 19000/32447 [00:01<00:01, 10748.91 examples/s]
Map: 65%|βββββββ | 21000/32447 [00:01<00:01, 10823.70 examples/s]
Map: 71%|βββββββ | 23000/32447 [00:02<00:00, 10784.11 examples/s]
Map: 77%|ββββββββ | 25000/32447 [00:02<00:00, 7869.26 examples/s]
Map: 83%|βββββββββ | 27000/32447 [00:02<00:00, 8538.25 examples/s]
Map: 89%|βββββββββ | 29000/32447 [00:02<00:00, 9022.56 examples/s]
Map: 96%|ββββββββββ| 31000/32447 [00:03<00:00, 9440.41 examples/s]
Map: 100%|ββββββββββ| 32447/32447 [00:03<00:00, 9474.30 examples/s]
Map: 100%|ββββββββββ| 32447/32447 [00:03<00:00, 9831.82 examples/s] |
|
Map: 0%| | 0/6946 [00:00<?, ? examples/s]
Map: 29%|βββ | 2000/6946 [00:00<00:00, 11608.63 examples/s]
Map: 58%|ββββββ | 4000/6946 [00:00<00:00, 11380.90 examples/s]
Map: 86%|βββββββββ | 6000/6946 [00:00<00:00, 11392.48 examples/s]
Map: 100%|ββββββββββ| 6946/6946 [00:00<00:00, 11297.05 examples/s] |
|
Map: 0%| | 0/14715 [00:00<?, ? examples/s]
Map: 14%|ββ | 2000/14715 [00:00<00:01, 12264.98 examples/s]
Map: 27%|βββ | 4000/14715 [00:00<00:00, 12320.92 examples/s]
Map: 41%|ββββ | 6000/14715 [00:00<00:00, 12772.71 examples/s]
Map: 54%|ββββββ | 8000/14715 [00:00<00:00, 12979.51 examples/s]
Map: 68%|βββββββ | 10000/14715 [00:00<00:00, 12993.32 examples/s]
Map: 82%|βββββββββ | 12000/14715 [00:00<00:00, 13101.07 examples/s]
Map: 95%|ββββββββββ| 14000/14715 [00:01<00:00, 12505.75 examples/s]
Map: 100%|ββββββββββ| 14715/14715 [00:01<00:00, 12533.17 examples/s] |
|
/content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library π€ Evaluate: https://huggingface.co/docs/evaluate |
|
metric = load_metric("seqeval", trust_remote_code=True) |
|
[INFO|trainer.py:811] 2024-09-09 12:50:10,148 >> The following columns in the training set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, tokens, ner_tags. If id, tokens, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message. |
|
[INFO|trainer.py:2134] 2024-09-09 12:50:10,704 >> ***** Running training ***** |
|
[INFO|trainer.py:2135] 2024-09-09 12:50:10,704 >> Num examples = 32,447 |
|
[INFO|trainer.py:2136] 2024-09-09 12:50:10,704 >> Num Epochs = 10 |
|
[INFO|trainer.py:2137] 2024-09-09 12:50:10,704 >> Instantaneous batch size per device = 32 |
|
[INFO|trainer.py:2140] 2024-09-09 12:50:10,704 >> Total train batch size (w. parallel, distributed & accumulation) = 64 |
|
[INFO|trainer.py:2141] 2024-09-09 12:50:10,704 >> Gradient Accumulation steps = 2 |
|
[INFO|trainer.py:2142] 2024-09-09 12:50:10,704 >> Total optimization steps = 5,070 |
|
[INFO|trainer.py:2143] 2024-09-09 12:50:10,705 >> Number of trainable parameters = 107,644,419 |
|
0%| | 0/5070 [00:00<?, ?it/s]
0%| | 1/5070 [00:01<1:55:56, 1.37s/it]
0%| | 2/5070 [00:01<1:01:02, 1.38it/s]
0%| | 3/5070 [00:01<43:59, 1.92it/s]
0%| | 4/5070 [00:02<37:03, 2.28it/s]
0%| | 5/5070 [00:02<33:54, 2.49it/s]
0%| | 6/5070 [00:02<29:56, 2.82it/s]
0%| | 7/5070 [00:03<29:13, 2.89it/s]
0%| | 8/5070 [00:03<29:19, 2.88it/s]
0%| | 9/5070 [00:03<28:01, 3.01it/s]
0%| | 10/5070 [00:04<29:27, 2.86it/s]
0%| | 11/5070 [00:04<31:52, 2.65it/s]
0%| | 12/5070 [00:04<31:16, 2.70it/s]
0%| | 13/5070 [00:05<30:19, 2.78it/s]
0%| | 14/5070 [00:05<32:35, 2.59it/s]
0%| | 15/5070 [00:06<29:33, 2.85it/s]
0%| | 16/5070 [00:06<29:08, 2.89it/s]
0%| | 17/5070 [00:06<32:23, 2.60it/s]
0%| | 18/5070 [00:07<32:56, 2.56it/s]
0%| | 19/5070 [00:07<30:14, 2.78it/s]
0%| | 20/5070 [00:07<31:25, 2.68it/s]
0%| | 21/5070 [00:08<28:05, 3.00it/s]
0%| | 22/5070 [00:08<27:40, 3.04it/s]
0%| | 23/5070 [00:08<29:31, 2.85it/s]
0%| | 24/5070 [00:09<27:57, 3.01it/s]
0%| | 25/5070 [00:09<29:57, 2.81it/s]
1%| | 26/5070 [00:09<30:14, 2.78it/s]
1%| | 27/5070 [00:10<31:00, 2.71it/s]
1%| | 28/5070 [00:10<33:13, 2.53it/s]
1%| | 29/5070 [00:11<31:44, 2.65it/s]
1%| | 30/5070 [00:11<34:06, 2.46it/s]
1%| | 31/5070 [00:11<31:33, 2.66it/s]
1%| | 32/5070 [00:12<30:32, 2.75it/s]
1%| | 33/5070 [00:12<32:34, 2.58it/s]
1%| | 34/5070 [00:13<33:22, 2.51it/s]
1%| | 35/5070 [00:13<32:11, 2.61it/s]
1%| | 36/5070 [00:13<29:47, 2.82it/s]
1%| | 37/5070 [00:14<34:03, 2.46it/s]
1%| | 38/5070 [00:14<33:12, 2.53it/s]
1%| | 39/5070 [00:15<32:01, 2.62it/s]
1%| | 40/5070 [00:15<32:04, 2.61it/s]
1%| | 41/5070 [00:15<31:28, 2.66it/s]
1%| | 42/5070 [00:16<29:43, 2.82it/s]
1%| | 43/5070 [00:16<29:54, 2.80it/s]
1%| | 44/5070 [00:16<30:08, 2.78it/s]
1%| | 45/5070 [00:17<28:16, 2.96it/s]
1%| | 46/5070 [00:17<28:34, 2.93it/s]
1%| | 47/5070 [00:17<29:04, 2.88it/s]
1%| | 48/5070 [00:18<30:31, 2.74it/s]
1%| | 49/5070 [00:18<29:37, 2.82it/s]
1%| | 50/5070 [00:19<33:53, 2.47it/s]
1%| | 51/5070 [00:19<34:07, 2.45it/s]
1%| | 52/5070 [00:19<34:08, 2.45it/s]
1%| | 53/5070 [00:20<31:49, 2.63it/s]
1%| | 54/5070 [00:20<31:13, 2.68it/s]
1%| | 55/5070 [00:20<31:05, 2.69it/s]
1%| | 56/5070 [00:21<30:58, 2.70it/s]
1%| | 57/5070 [00:21<29:45, 2.81it/s]
1%| | 58/5070 [00:21<30:11, 2.77it/s]
1%| | 59/5070 [00:22<30:56, 2.70it/s]
1%| | 60/5070 [00:22<31:45, 2.63it/s]
1%| | 61/5070 [00:23<31:48, 2.63it/s]
1%| | 62/5070 [00:23<31:35, 2.64it/s]
1%| | 63/5070 [00:23<31:04, 2.69it/s]
1%|β | 64/5070 [00:24<28:24, 2.94it/s]
1%|β | 65/5070 [00:24<27:01, 3.09it/s]
1%|β | 66/5070 [00:24<30:56, 2.70it/s]
1%|β | 67/5070 [00:25<33:25, 2.50it/s]
1%|β | 68/5070 [00:25<37:18, 2.23it/s]
1%|β | 69/5070 [00:26<39:18, 2.12it/s]
1%|β | 70/5070 [00:26<35:57, 2.32it/s]
1%|β | 71/5070 [00:27<35:19, 2.36it/s]
1%|β | 72/5070 [00:27<36:17, 2.30it/s]
1%|β | 73/5070 [00:28<38:25, 2.17it/s]
1%|β | 74/5070 [00:28<35:23, 2.35it/s]
1%|β | 75/5070 [00:28<35:34, 2.34it/s]
1%|β | 76/5070 [00:29<35:16, 2.36it/s]
2%|β | 77/5070 [00:29<37:14, 2.23it/s]
2%|β | 78/5070 [00:30<36:13, 2.30it/s]
2%|β | 79/5070 [00:30<37:43, 2.20it/s]
2%|β | 80/5070 [00:31<35:44, 2.33it/s]
2%|β | 81/5070 [00:31<35:40, 2.33it/s]
2%|β | 82/5070 [00:31<32:56, 2.52it/s]
2%|β | 83/5070 [00:32<32:34, 2.55it/s]
2%|β | 84/5070 [00:32<36:48, 2.26it/s]
2%|β | 85/5070 [00:33<34:40, 2.40it/s]
2%|β | 86/5070 [00:33<35:53, 2.31it/s]
2%|β | 87/5070 [00:34<38:14, 2.17it/s]
2%|β | 88/5070 [00:34<37:25, 2.22it/s]
2%|β | 89/5070 [00:34<33:37, 2.47it/s]
2%|β | 90/5070 [00:35<32:47, 2.53it/s]
2%|β | 91/5070 [00:35<30:14, 2.74it/s]
2%|β | 92/5070 [00:36<34:18, 2.42it/s]
2%|β | 93/5070 [00:36<33:53, 2.45it/s]
2%|β | 94/5070 [00:36<34:27, 2.41it/s]
2%|β | 95/5070 [00:37<32:28, 2.55it/s]
2%|β | 96/5070 [00:37<31:05, 2.67it/s]
2%|β | 97/5070 [00:37<28:50, 2.87it/s]
2%|β | 98/5070 [00:38<32:59, 2.51it/s]
2%|β | 99/5070 [00:38<31:29, 2.63it/s]
2%|β | 100/5070 [00:39<31:13, 2.65it/s]
2%|β | 101/5070 [00:39<34:40, 2.39it/s]
2%|β | 102/5070 [00:39<31:42, 2.61it/s]
2%|β | 103/5070 [00:40<32:17, 2.56it/s]
2%|β | 104/5070 [00:40<30:58, 2.67it/s]
2%|β | 105/5070 [00:41<29:59, 2.76it/s]
2%|β | 106/5070 [00:41<36:53, 2.24it/s]
2%|β | 107/5070 [00:42<34:40, 2.39it/s]
2%|β | 108/5070 [00:42<33:38, 2.46it/s]
2%|β | 109/5070 [00:42<33:31, 2.47it/s]
2%|β | 110/5070 [00:43<31:03, 2.66it/s]
2%|β | 111/5070 [00:43<31:56, 2.59it/s]
2%|β | 112/5070 [00:43<31:17, 2.64it/s]
2%|β | 113/5070 [00:44<31:57, 2.58it/s]
2%|β | 114/5070 [00:44<29:33, 2.80it/s]
2%|β | 115/5070 [00:45<31:12, 2.65it/s]
2%|β | 116/5070 [00:45<31:17, 2.64it/s]
2%|β | 117/5070 [00:45<33:04, 2.50it/s]
2%|β | 118/5070 [00:46<36:26, 2.26it/s]
2%|β | 119/5070 [00:47<42:31, 1.94it/s]
2%|β | 120/5070 [00:47<37:20, 2.21it/s]
2%|β | 121/5070 [00:47<35:21, 2.33it/s]
2%|β | 122/5070 [00:48<34:00, 2.43it/s]
2%|β | 123/5070 [00:48<32:01, 2.57it/s]
2%|β | 124/5070 [00:48<31:24, 2.62it/s]
2%|β | 125/5070 [00:49<29:14, 2.82it/s]
2%|β | 126/5070 [00:49<31:42, 2.60it/s]
3%|β | 127/5070 [00:50<36:51, 2.24it/s]
3%|β | 128/5070 [00:50<35:05, 2.35it/s]
3%|β | 129/5070 [00:50<32:31, 2.53it/s]
3%|β | 130/5070 [00:51<33:29, 2.46it/s]
3%|β | 131/5070 [00:51<34:54, 2.36it/s]
3%|β | 132/5070 [00:52<32:01, 2.57it/s]
3%|β | 133/5070 [00:52<30:11, 2.73it/s]
3%|β | 134/5070 [00:52<27:55, 2.95it/s]
3%|β | 135/5070 [00:53<27:47, 2.96it/s]
3%|β | 136/5070 [00:53<34:07, 2.41it/s]
3%|β | 137/5070 [00:54<36:48, 2.23it/s]
3%|β | 138/5070 [00:54<34:08, 2.41it/s]
3%|β | 139/5070 [00:54<32:28, 2.53it/s]
3%|β | 140/5070 [00:55<32:32, 2.53it/s]
3%|β | 141/5070 [00:55<34:10, 2.40it/s]
3%|β | 142/5070 [00:56<33:01, 2.49it/s]
3%|β | 143/5070 [00:56<34:43, 2.36it/s]
3%|β | 144/5070 [00:56<32:40, 2.51it/s]
3%|β | 145/5070 [00:57<34:42, 2.37it/s]
3%|β | 146/5070 [00:57<33:20, 2.46it/s]
3%|β | 147/5070 [00:58<38:03, 2.16it/s]
3%|β | 148/5070 [00:58<38:10, 2.15it/s]
3%|β | 149/5070 [00:59<39:25, 2.08it/s]
3%|β | 150/5070 [00:59<37:15, 2.20it/s]
3%|β | 151/5070 [01:00<35:10, 2.33it/s]
3%|β | 152/5070 [01:00<35:57, 2.28it/s]
3%|β | 153/5070 [01:00<32:39, 2.51it/s]
3%|β | 154/5070 [01:01<31:50, 2.57it/s]
3%|β | 155/5070 [01:01<30:24, 2.69it/s]
3%|β | 156/5070 [01:01<29:07, 2.81it/s]
3%|β | 157/5070 [01:02<27:52, 2.94it/s]
3%|β | 158/5070 [01:02<26:45, 3.06it/s]
3%|β | 159/5070 [01:02<27:09, 3.01it/s]
3%|β | 160/5070 [01:03<28:05, 2.91it/s]
3%|β | 161/5070 [01:03<28:55, 2.83it/s]
3%|β | 162/5070 [01:04<32:05, 2.55it/s]
3%|β | 163/5070 [01:04<32:59, 2.48it/s]
3%|β | 164/5070 [01:04<33:29, 2.44it/s]
3%|β | 165/5070 [01:05<38:00, 2.15it/s]
3%|β | 166/5070 [01:05<37:31, 2.18it/s]
3%|β | 167/5070 [01:06<34:33, 2.36it/s]
3%|β | 168/5070 [01:06<30:48, 2.65it/s]
3%|β | 169/5070 [01:06<29:41, 2.75it/s]
3%|β | 170/5070 [01:07<28:36, 2.85it/s]
3%|β | 171/5070 [01:07<29:44, 2.74it/s]
3%|β | 172/5070 [01:07<29:24, 2.78it/s]
3%|β | 173/5070 [01:08<30:28, 2.68it/s]
3%|β | 174/5070 [01:08<31:08, 2.62it/s]
3%|β | 175/5070 [01:09<30:05, 2.71it/s]
3%|β | 176/5070 [01:09<31:47, 2.57it/s]
3%|β | 177/5070 [01:09<30:57, 2.63it/s]
4%|β | 178/5070 [01:10<30:51, 2.64it/s]
4%|β | 179/5070 [01:10<32:25, 2.51it/s]
4%|β | 180/5070 [01:11<32:40, 2.49it/s]
4%|β | 181/5070 [01:11<30:53, 2.64it/s]
4%|β | 182/5070 [01:11<29:51, 2.73it/s]
4%|β | 183/5070 [01:12<30:08, 2.70it/s]
4%|β | 184/5070 [01:12<29:08, 2.79it/s]
4%|β | 185/5070 [01:12<27:38, 2.95it/s]
4%|β | 186/5070 [01:13<29:08, 2.79it/s]
4%|β | 187/5070 [01:13<30:50, 2.64it/s]
4%|β | 188/5070 [01:13<29:46, 2.73it/s]
4%|β | 189/5070 [01:14<27:02, 3.01it/s]
4%|β | 190/5070 [01:14<32:28, 2.50it/s]
4%|β | 191/5070 [01:15<33:35, 2.42it/s]
4%|β | 192/5070 [01:15<33:34, 2.42it/s]
4%|β | 193/5070 [01:16<39:01, 2.08it/s]
4%|β | 194/5070 [01:16<38:27, 2.11it/s]
4%|β | 195/5070 [01:17<35:38, 2.28it/s]
4%|β | 196/5070 [01:17<33:20, 2.44it/s]
4%|β | 197/5070 [01:17<31:14, 2.60it/s]
4%|β | 198/5070 [01:18<32:57, 2.46it/s]
4%|β | 199/5070 [01:18<30:26, 2.67it/s]
4%|β | 200/5070 [01:19<34:45, 2.34it/s]
4%|β | 201/5070 [01:19<31:49, 2.55it/s]
4%|β | 202/5070 [01:19<32:15, 2.52it/s]
4%|β | 203/5070 [01:20<36:02, 2.25it/s]
4%|β | 204/5070 [01:20<36:30, 2.22it/s]
4%|β | 205/5070 [01:21<39:03, 2.08it/s]
4%|β | 206/5070 [01:21<36:32, 2.22it/s]
4%|β | 207/5070 [01:22<34:56, 2.32it/s]
4%|β | 208/5070 [01:22<34:18, 2.36it/s]
4%|β | 209/5070 [01:22<32:08, 2.52it/s]
4%|β | 210/5070 [01:23<31:17, 2.59it/s]
4%|β | 211/5070 [01:23<29:35, 2.74it/s]
4%|β | 212/5070 [01:23<33:09, 2.44it/s]
4%|β | 213/5070 [01:24<32:48, 2.47it/s]
4%|β | 214/5070 [01:24<36:04, 2.24it/s]
4%|β | 215/5070 [01:25<33:15, 2.43it/s]
4%|β | 216/5070 [01:25<32:15, 2.51it/s]
4%|β | 217/5070 [01:26<32:45, 2.47it/s]
4%|β | 218/5070 [01:26<32:25, 2.49it/s]
4%|β | 219/5070 [01:26<34:45, 2.33it/s]
4%|β | 220/5070 [01:27<37:32, 2.15it/s]
4%|β | 221/5070 [01:27<38:50, 2.08it/s]
4%|β | 222/5070 [01:28<34:44, 2.33it/s]
4%|β | 223/5070 [01:28<34:06, 2.37it/s]
4%|β | 224/5070 [01:29<34:41, 2.33it/s]
4%|β | 225/5070 [01:29<34:43, 2.33it/s]
4%|β | 226/5070 [01:30<34:36, 2.33it/s]
4%|β | 227/5070 [01:30<35:31, 2.27it/s]
4%|β | 228/5070 [01:30<35:10, 2.29it/s]
5%|β | 229/5070 [01:31<31:33, 2.56it/s]
5%|β | 230/5070 [01:31<29:53, 2.70it/s]
5%|β | 231/5070 [01:31<27:03, 2.98it/s]
5%|β | 232/5070 [01:32<27:04, 2.98it/s]
5%|β | 233/5070 [01:32<28:05, 2.87it/s]
5%|β | 234/5070 [01:32<27:50, 2.90it/s]
5%|β | 235/5070 [01:33<29:12, 2.76it/s]
5%|β | 236/5070 [01:33<29:10, 2.76it/s]
5%|β | 237/5070 [01:33<29:14, 2.75it/s]
5%|β | 238/5070 [01:34<28:12, 2.85it/s]
5%|β | 239/5070 [01:34<28:52, 2.79it/s]
5%|β | 240/5070 [01:35<28:58, 2.78it/s]
5%|β | 241/5070 [01:35<30:33, 2.63it/s]
5%|β | 242/5070 [01:35<27:48, 2.89it/s]
5%|β | 243/5070 [01:36<27:25, 2.93it/s]
5%|β | 244/5070 [01:36<26:48, 3.00it/s]
5%|β | 245/5070 [01:36<29:15, 2.75it/s]
5%|β | 246/5070 [01:37<27:55, 2.88it/s]
5%|β | 247/5070 [01:37<28:18, 2.84it/s]
5%|β | 248/5070 [01:37<30:50, 2.61it/s]
5%|β | 249/5070 [01:38<31:34, 2.54it/s]
5%|β | 250/5070 [01:38<30:21, 2.65it/s]
5%|β | 251/5070 [01:39<29:52, 2.69it/s]
5%|β | 252/5070 [01:39<32:46, 2.45it/s]
5%|β | 253/5070 [01:39<31:44, 2.53it/s]
5%|β | 254/5070 [01:40<31:13, 2.57it/s]
5%|β | 255/5070 [01:40<31:48, 2.52it/s]
5%|β | 256/5070 [01:41<31:07, 2.58it/s]
5%|β | 257/5070 [01:41<31:06, 2.58it/s]
5%|β | 258/5070 [01:41<30:15, 2.65it/s]
5%|β | 259/5070 [01:42<29:15, 2.74it/s]
5%|β | 260/5070 [01:42<31:19, 2.56it/s]
5%|β | 261/5070 [01:43<36:08, 2.22it/s]
5%|β | 262/5070 [01:43<33:22, 2.40it/s]
5%|β | 263/5070 [01:43<32:11, 2.49it/s]
5%|β | 264/5070 [01:44<29:48, 2.69it/s]
5%|β | 265/5070 [01:44<28:33, 2.80it/s]
5%|β | 266/5070 [01:44<28:52, 2.77it/s]
5%|β | 267/5070 [01:45<32:16, 2.48it/s]
5%|β | 268/5070 [01:45<33:51, 2.36it/s]
5%|β | 269/5070 [01:46<33:57, 2.36it/s]
5%|β | 270/5070 [01:46<31:25, 2.55it/s]
5%|β | 271/5070 [01:46<31:23, 2.55it/s]
5%|β | 272/5070 [01:47<32:46, 2.44it/s]
5%|β | 273/5070 [01:47<32:44, 2.44it/s]
5%|β | 274/5070 [01:48<33:13, 2.41it/s]
5%|β | 275/5070 [01:48<32:30, 2.46it/s]
5%|β | 276/5070 [01:49<32:22, 2.47it/s]
5%|β | 277/5070 [01:49<31:44, 2.52it/s]
5%|β | 278/5070 [01:49<31:56, 2.50it/s]
6%|β | 279/5070 [01:50<31:59, 2.50it/s]
6%|β | 280/5070 [01:50<30:52, 2.59it/s]
6%|β | 281/5070 [01:50<29:44, 2.68it/s]
6%|β | 282/5070 [01:51<31:30, 2.53it/s]
6%|β | 283/5070 [01:51<33:37, 2.37it/s]
6%|β | 284/5070 [01:52<32:58, 2.42it/s]
6%|β | 285/5070 [01:52<32:31, 2.45it/s]
6%|β | 286/5070 [01:53<31:45, 2.51it/s]
6%|β | 287/5070 [01:53<30:22, 2.63it/s]
6%|β | 288/5070 [01:53<28:53, 2.76it/s]
6%|β | 289/5070 [01:54<29:05, 2.74it/s]
6%|β | 290/5070 [01:54<29:51, 2.67it/s]
6%|β | 291/5070 [01:54<29:46, 2.67it/s]
6%|β | 292/5070 [01:55<28:56, 2.75it/s]
6%|β | 293/5070 [01:55<27:36, 2.88it/s]
6%|β | 294/5070 [01:55<27:28, 2.90it/s]
6%|β | 295/5070 [01:56<29:02, 2.74it/s]
6%|β | 296/5070 [01:56<34:38, 2.30it/s]
6%|β | 297/5070 [01:57<33:12, 2.40it/s]
6%|β | 298/5070 [01:57<30:01, 2.65it/s]
6%|β | 299/5070 [01:58<35:52, 2.22it/s]
6%|β | 300/5070 [01:58<32:11, 2.47it/s]
6%|β | 301/5070 [01:58<30:00, 2.65it/s]
6%|β | 302/5070 [01:59<32:15, 2.46it/s]
6%|β | 303/5070 [01:59<36:24, 2.18it/s]
6%|β | 304/5070 [02:00<32:07, 2.47it/s]
6%|β | 305/5070 [02:00<33:30, 2.37it/s]
6%|β | 306/5070 [02:00<33:06, 2.40it/s]
6%|β | 307/5070 [02:01<29:43, 2.67it/s]
6%|β | 308/5070 [02:01<34:19, 2.31it/s]
6%|β | 309/5070 [02:02<31:41, 2.50it/s]
6%|β | 310/5070 [02:02<32:56, 2.41it/s]
6%|β | 311/5070 [02:02<29:29, 2.69it/s]
6%|β | 312/5070 [02:03<33:51, 2.34it/s]
6%|β | 313/5070 [02:03<31:25, 2.52it/s]
6%|β | 314/5070 [02:04<33:19, 2.38it/s]
6%|β | 315/5070 [02:04<32:28, 2.44it/s]
6%|β | 316/5070 [02:04<31:52, 2.49it/s]
6%|β | 317/5070 [02:05<30:42, 2.58it/s]
6%|β | 318/5070 [02:05<29:19, 2.70it/s]
6%|β | 319/5070 [02:05<28:40, 2.76it/s]
6%|β | 320/5070 [02:06<27:29, 2.88it/s]
6%|β | 321/5070 [02:06<29:14, 2.71it/s]
6%|β | 322/5070 [02:07<28:11, 2.81it/s]
6%|β | 323/5070 [02:07<27:18, 2.90it/s]
6%|β | 324/5070 [02:07<29:24, 2.69it/s]
6%|β | 325/5070 [02:08<28:57, 2.73it/s]
6%|β | 326/5070 [02:08<28:15, 2.80it/s]
6%|β | 327/5070 [02:08<27:16, 2.90it/s]
6%|β | 328/5070 [02:09<28:10, 2.81it/s]
6%|β | 329/5070 [02:09<25:59, 3.04it/s]
7%|β | 330/5070 [02:09<26:56, 2.93it/s]
7%|β | 331/5070 [02:10<41:18, 1.91it/s]
7%|β | 332/5070 [02:11<37:36, 2.10it/s]
7%|β | 333/5070 [02:11<35:17, 2.24it/s]
7%|β | 334/5070 [02:11<30:48, 2.56it/s]
7%|β | 335/5070 [02:12<32:01, 2.46it/s]
7%|β | 336/5070 [02:12<30:39, 2.57it/s]
7%|β | 337/5070 [02:12<31:04, 2.54it/s]
7%|β | 338/5070 [02:13<31:22, 2.51it/s]
7%|β | 339/5070 [02:13<29:31, 2.67it/s]
7%|β | 340/5070 [02:14<32:09, 2.45it/s]
7%|β | 341/5070 [02:14<32:00, 2.46it/s]
7%|β | 342/5070 [02:14<31:12, 2.53it/s]
7%|β | 343/5070 [02:15<31:17, 2.52it/s]
7%|β | 344/5070 [02:15<31:32, 2.50it/s]
7%|β | 345/5070 [02:16<34:21, 2.29it/s]
7%|β | 346/5070 [02:16<31:52, 2.47it/s]
7%|β | 347/5070 [02:16<30:24, 2.59it/s]
7%|β | 348/5070 [02:17<29:56, 2.63it/s]
7%|β | 349/5070 [02:17<32:38, 2.41it/s]
7%|β | 350/5070 [02:18<31:33, 2.49it/s]
7%|β | 351/5070 [02:18<29:10, 2.70it/s]
7%|β | 352/5070 [02:18<29:07, 2.70it/s]
7%|β | 353/5070 [02:19<29:14, 2.69it/s]
7%|β | 354/5070 [02:19<31:25, 2.50it/s]
7%|β | 355/5070 [02:19<29:31, 2.66it/s]
7%|β | 356/5070 [02:20<27:26, 2.86it/s]
7%|β | 357/5070 [02:20<25:35, 3.07it/s]
7%|β | 358/5070 [02:20<27:36, 2.84it/s]
7%|β | 359/5070 [02:21<28:06, 2.79it/s]
7%|β | 360/5070 [02:21<28:07, 2.79it/s]
7%|β | 361/5070 [02:21<26:24, 2.97it/s]
7%|β | 362/5070 [02:22<28:17, 2.77it/s]
7%|β | 363/5070 [02:22<29:25, 2.67it/s]
7%|β | 364/5070 [02:23<26:55, 2.91it/s]
7%|β | 365/5070 [02:23<32:24, 2.42it/s]
7%|β | 366/5070 [02:24<31:13, 2.51it/s]
7%|β | 367/5070 [02:24<29:52, 2.62it/s]
7%|β | 368/5070 [02:24<28:41, 2.73it/s]
7%|β | 369/5070 [02:25<27:59, 2.80it/s]
7%|β | 370/5070 [02:25<28:45, 2.72it/s]
7%|β | 371/5070 [02:25<31:32, 2.48it/s]
7%|β | 372/5070 [02:26<28:45, 2.72it/s]
7%|β | 373/5070 [02:26<28:16, 2.77it/s]
7%|β | 374/5070 [02:26<29:23, 2.66it/s]
7%|β | 375/5070 [02:27<32:17, 2.42it/s]
7%|β | 376/5070 [02:27<30:05, 2.60it/s]
7%|β | 377/5070 [02:28<32:03, 2.44it/s]
7%|β | 378/5070 [02:28<31:05, 2.52it/s]
7%|β | 379/5070 [02:28<30:05, 2.60it/s]
7%|β | 380/5070 [02:29<32:30, 2.40it/s]
8%|β | 381/5070 [02:29<31:32, 2.48it/s]
8%|β | 382/5070 [02:30<34:09, 2.29it/s]
8%|β | 383/5070 [02:30<33:53, 2.30it/s]
8%|β | 384/5070 [02:31<32:36, 2.40it/s]
8%|β | 385/5070 [02:31<32:58, 2.37it/s]
8%|β | 386/5070 [02:32<33:49, 2.31it/s]
8%|β | 387/5070 [02:32<34:36, 2.26it/s]
8%|β | 388/5070 [02:32<30:40, 2.54it/s]
8%|β | 389/5070 [02:33<33:50, 2.30it/s]
8%|β | 390/5070 [02:33<34:57, 2.23it/s]
8%|β | 391/5070 [02:34<31:32, 2.47it/s]
8%|β | 392/5070 [02:34<29:57, 2.60it/s]
8%|β | 393/5070 [02:34<28:23, 2.75it/s]
8%|β | 394/5070 [02:35<28:33, 2.73it/s]
8%|β | 395/5070 [02:35<29:05, 2.68it/s]
8%|β | 396/5070 [02:35<29:46, 2.62it/s]
8%|β | 397/5070 [02:36<27:19, 2.85it/s]
8%|β | 398/5070 [02:36<28:19, 2.75it/s]
8%|β | 399/5070 [02:36<28:51, 2.70it/s]
8%|β | 400/5070 [02:37<28:11, 2.76it/s]
8%|β | 401/5070 [02:37<29:33, 2.63it/s]
8%|β | 402/5070 [02:38<31:49, 2.44it/s]
8%|β | 403/5070 [02:38<31:43, 2.45it/s]
8%|β | 404/5070 [02:39<31:30, 2.47it/s]
8%|β | 405/5070 [02:39<29:03, 2.68it/s]
8%|β | 406/5070 [02:39<29:03, 2.67it/s]
8%|β | 407/5070 [02:40<30:11, 2.57it/s]
8%|β | 408/5070 [02:40<30:14, 2.57it/s]
8%|β | 409/5070 [02:41<33:16, 2.33it/s]
8%|β | 410/5070 [02:41<30:50, 2.52it/s]
8%|β | 411/5070 [02:41<30:26, 2.55it/s]
8%|β | 412/5070 [02:42<30:50, 2.52it/s]
8%|β | 413/5070 [02:42<33:27, 2.32it/s]
8%|β | 414/5070 [02:43<32:54, 2.36it/s]
8%|β | 415/5070 [02:43<30:43, 2.53it/s]
8%|β | 416/5070 [02:43<27:35, 2.81it/s]
8%|β | 417/5070 [02:43<27:18, 2.84it/s]
8%|β | 418/5070 [02:44<28:26, 2.73it/s]
8%|β | 419/5070 [02:44<28:17, 2.74it/s]
8%|β | 420/5070 [02:45<27:58, 2.77it/s]
8%|β | 421/5070 [02:45<26:19, 2.94it/s]
8%|β | 422/5070 [02:45<24:50, 3.12it/s]
8%|β | 423/5070 [02:46<26:30, 2.92it/s]
8%|β | 424/5070 [02:46<26:57, 2.87it/s]
8%|β | 425/5070 [02:46<29:17, 2.64it/s]
8%|β | 426/5070 [02:47<29:36, 2.61it/s]
8%|β | 427/5070 [02:47<30:52, 2.51it/s]
8%|β | 428/5070 [02:48<29:51, 2.59it/s]
8%|β | 429/5070 [02:48<28:39, 2.70it/s]
8%|β | 430/5070 [02:48<28:36, 2.70it/s]
9%|β | 431/5070 [02:49<28:34, 2.71it/s]
9%|β | 432/5070 [02:49<28:04, 2.75it/s]
9%|β | 433/5070 [02:49<27:33, 2.80it/s]
9%|β | 434/5070 [02:50<26:46, 2.89it/s]
9%|β | 435/5070 [02:50<30:11, 2.56it/s]
9%|β | 436/5070 [02:50<27:57, 2.76it/s]
9%|β | 437/5070 [02:51<27:25, 2.82it/s]
9%|β | 438/5070 [02:51<28:27, 2.71it/s]
9%|β | 439/5070 [02:52<29:18, 2.63it/s]
9%|β | 440/5070 [02:52<29:07, 2.65it/s]
9%|β | 441/5070 [02:52<29:23, 2.63it/s]
9%|β | 442/5070 [02:53<28:21, 2.72it/s]
9%|β | 443/5070 [02:53<26:46, 2.88it/s]
9%|β | 444/5070 [02:53<27:21, 2.82it/s]
9%|β | 445/5070 [02:54<27:35, 2.79it/s]
9%|β | 446/5070 [02:54<31:53, 2.42it/s]
9%|β | 447/5070 [02:55<29:38, 2.60it/s]
9%|β | 448/5070 [02:55<32:06, 2.40it/s]
9%|β | 449/5070 [02:55<30:18, 2.54it/s]
9%|β | 450/5070 [02:56<30:30, 2.52it/s]
9%|β | 451/5070 [02:56<35:58, 2.14it/s]
9%|β | 452/5070 [02:57<31:53, 2.41it/s]
9%|β | 453/5070 [02:57<30:16, 2.54it/s]
9%|β | 454/5070 [02:58<32:03, 2.40it/s]
9%|β | 455/5070 [02:58<32:14, 2.39it/s]
9%|β | 456/5070 [02:58<30:19, 2.54it/s]
9%|β | 457/5070 [02:59<29:53, 2.57it/s]
9%|β | 458/5070 [02:59<29:59, 2.56it/s]
9%|β | 459/5070 [02:59<29:36, 2.60it/s]
9%|β | 460/5070 [03:00<32:30, 2.36it/s]
9%|β | 461/5070 [03:00<31:48, 2.42it/s]
9%|β | 462/5070 [03:01<30:53, 2.49it/s]
9%|β | 463/5070 [03:01<29:15, 2.62it/s]
9%|β | 464/5070 [03:01<26:44, 2.87it/s]
9%|β | 465/5070 [03:02<28:36, 2.68it/s]
9%|β | 466/5070 [03:02<28:37, 2.68it/s]
9%|β | 467/5070 [03:02<27:06, 2.83it/s]
9%|β | 468/5070 [03:03<26:37, 2.88it/s]
9%|β | 469/5070 [03:03<26:46, 2.86it/s]
9%|β | 470/5070 [03:03<27:13, 2.82it/s]
9%|β | 471/5070 [03:04<27:24, 2.80it/s]
9%|β | 472/5070 [03:04<27:36, 2.78it/s]
9%|β | 473/5070 [03:05<26:50, 2.86it/s]
9%|β | 474/5070 [03:05<28:13, 2.71it/s]
9%|β | 475/5070 [03:05<28:49, 2.66it/s]
9%|β | 476/5070 [03:06<29:09, 2.63it/s]
9%|β | 477/5070 [03:06<27:36, 2.77it/s]
9%|β | 478/5070 [03:07<29:31, 2.59it/s]
9%|β | 479/5070 [03:07<27:13, 2.81it/s]
9%|β | 480/5070 [03:07<27:09, 2.82it/s]
9%|β | 481/5070 [03:07<24:54, 3.07it/s]
10%|β | 482/5070 [03:08<28:23, 2.69it/s]
10%|β | 483/5070 [03:08<27:57, 2.73it/s]
10%|β | 484/5070 [03:08<25:38, 2.98it/s]
10%|β | 485/5070 [03:09<25:07, 3.04it/s]
10%|β | 486/5070 [03:09<26:52, 2.84it/s]
10%|β | 487/5070 [03:10<29:34, 2.58it/s]
10%|β | 488/5070 [03:10<30:52, 2.47it/s]
10%|β | 489/5070 [03:10<28:52, 2.64it/s]
10%|β | 490/5070 [03:11<28:11, 2.71it/s]
10%|β | 491/5070 [03:11<28:24, 2.69it/s]
10%|β | 492/5070 [03:12<30:32, 2.50it/s]
10%|β | 493/5070 [03:12<30:43, 2.48it/s]
10%|β | 494/5070 [03:12<29:25, 2.59it/s]
10%|β | 495/5070 [03:13<26:43, 2.85it/s]
10%|β | 496/5070 [03:13<27:07, 2.81it/s]
10%|β | 497/5070 [03:13<29:10, 2.61it/s]
10%|β | 498/5070 [03:14<30:41, 2.48it/s]
10%|β | 499/5070 [03:14<29:46, 2.56it/s]
10%|β | 500/5070 [03:15<29:14, 2.60it/s]
10%|β | 500/5070 [03:15<29:14, 2.60it/s]
10%|β | 501/5070 [03:15<31:12, 2.44it/s]
10%|β | 502/5070 [03:16<31:45, 2.40it/s]
10%|β | 503/5070 [03:16<34:48, 2.19it/s]
10%|β | 504/5070 [03:17<35:06, 2.17it/s]
10%|β | 505/5070 [03:17<34:39, 2.20it/s]
10%|β | 506/5070 [03:17<31:02, 2.45it/s]
10%|β | 507/5070 [03:18<27:23, 2.78it/s][INFO|trainer.py:811] 2024-09-09 12:53:28,785 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, tokens, ner_tags. If id, tokens, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message. |
|
[INFO|trainer.py:3819] 2024-09-09 12:53:28,787 >> |
|
***** Running Evaluation ***** |
|
[INFO|trainer.py:3821] 2024-09-09 12:53:28,787 >> Num examples = 6946 |
|
[INFO|trainer.py:3824] 2024-09-09 12:53:28,787 >> Batch size = 8 |
|
{'loss': 0.0183, 'grad_norm': 0.16175590455532074, 'learning_rate': 4.5069033530571994e-05, 'epoch': 0.99} |
|
|
|
0%| | 0/869 [00:00<?, ?it/s][A |
|
1%| | 10/869 [00:00<00:09, 91.31it/s][A |
|
2%|β | 20/869 [00:00<00:10, 79.28it/s][A |
|
3%|β | 29/869 [00:00<00:10, 77.60it/s][A |
|
4%|β | 37/869 [00:00<00:11, 74.43it/s][A |
|
5%|β | 46/869 [00:00<00:10, 78.18it/s][A |
|
6%|β | 55/869 [00:00<00:10, 80.86it/s][A |
|
7%|β | 64/869 [00:00<00:10, 77.08it/s][A |
|
8%|β | 72/869 [00:00<00:10, 76.17it/s][A |
|
9%|β | 82/869 [00:01<00:09, 80.57it/s][A |
|
11%|β | 92/869 [00:01<00:09, 83.71it/s][A |
|
12%|ββ | 102/869 [00:01<00:09, 84.98it/s][A |
|
13%|ββ | 111/869 [00:01<00:09, 82.02it/s][A |
|
14%|ββ | 120/869 [00:01<00:09, 80.94it/s][A |
|
15%|ββ | 129/869 [00:01<00:09, 78.76it/s][A |
|
16%|ββ | 138/869 [00:01<00:08, 81.75it/s][A |
|
17%|ββ | 147/869 [00:01<00:09, 77.19it/s][A |
|
18%|ββ | 156/869 [00:01<00:09, 78.39it/s][A |
|
19%|ββ | 164/869 [00:02<00:08, 78.36it/s][A |
|
20%|ββ | 172/869 [00:02<00:09, 76.45it/s][A |
|
21%|ββ | 180/869 [00:02<00:09, 75.56it/s][A |
|
22%|βββ | 189/869 [00:02<00:08, 77.85it/s][A |
|
23%|βββ | 197/869 [00:02<00:08, 74.92it/s][A |
|
24%|βββ | 206/869 [00:02<00:08, 77.53it/s][A |
|
25%|βββ | 215/869 [00:02<00:08, 79.20it/s][A |
|
26%|βββ | 224/869 [00:02<00:08, 80.25it/s][A |
|
27%|βββ | 233/869 [00:02<00:08, 76.55it/s][A |
|
28%|βββ | 241/869 [00:03<00:08, 71.54it/s][A |
|
29%|βββ | 250/869 [00:03<00:08, 74.36it/s][A |
|
30%|βββ | 259/869 [00:03<00:07, 76.53it/s][A |
|
31%|βββ | 267/869 [00:03<00:07, 75.31it/s][A |
|
32%|ββββ | 275/869 [00:03<00:07, 74.63it/s][A |
|
33%|ββββ | 283/869 [00:03<00:07, 73.75it/s][A |
|
33%|ββββ | 291/869 [00:03<00:07, 74.15it/s][A |
|
34%|ββββ | 299/869 [00:03<00:07, 71.68it/s][A |
|
35%|ββββ | 307/869 [00:03<00:07, 72.22it/s][A |
|
36%|ββββ | 315/869 [00:04<00:07, 72.79it/s][A |
|
37%|ββββ | 323/869 [00:04<00:07, 72.47it/s][A |
|
38%|ββββ | 333/869 [00:04<00:06, 78.26it/s][A |
|
39%|ββββ | 341/869 [00:04<00:06, 77.41it/s][A |
|
40%|ββββ | 349/869 [00:04<00:07, 71.93it/s][A |
|
41%|ββββ | 358/869 [00:04<00:06, 74.83it/s][A |
|
42%|βββββ | 367/869 [00:04<00:06, 78.08it/s][A |
|
43%|βββββ | 375/869 [00:04<00:06, 74.02it/s][A |
|
44%|βββββ | 383/869 [00:04<00:06, 74.40it/s][A |
|
45%|βββββ | 391/869 [00:05<00:06, 71.69it/s][A |
|
46%|βββββ | 399/869 [00:05<00:06, 73.08it/s][A |
|
47%|βββββ | 408/869 [00:05<00:06, 76.09it/s][A |
|
48%|βββββ | 417/869 [00:05<00:05, 78.91it/s][A |
|
49%|βββββ | 425/869 [00:05<00:05, 79.05it/s][A |
|
50%|βββββ | 434/869 [00:05<00:05, 79.59it/s][A |
|
51%|βββββ | 442/869 [00:05<00:05, 76.14it/s][A |
|
52%|ββββββ | 450/869 [00:05<00:05, 77.00it/s][A |
|
53%|ββββββ | 459/869 [00:05<00:05, 77.04it/s][A |
|
54%|ββββββ | 467/869 [00:06<00:05, 76.09it/s][A |
|
55%|ββββββ | 477/869 [00:06<00:04, 81.01it/s][A |
|
56%|ββββββ | 486/869 [00:06<00:04, 82.35it/s][A |
|
57%|ββββββ | 495/869 [00:06<00:04, 76.40it/s][A |
|
58%|ββββββ | 503/869 [00:06<00:04, 74.27it/s][A |
|
59%|ββββββ | 511/869 [00:06<00:04, 75.21it/s][A |
|
60%|ββββββ | 520/869 [00:06<00:04, 78.71it/s][A |
|
61%|ββββββ | 528/869 [00:06<00:04, 72.74it/s][A |
|
62%|βββββββ | 536/869 [00:06<00:04, 73.74it/s][A |
|
63%|βββββββ | 544/869 [00:07<00:04, 70.86it/s][A |
|
64%|βββββββ | 553/869 [00:07<00:04, 73.98it/s][A |
|
65%|βββββββ | 561/869 [00:07<00:04, 75.50it/s][A |
|
65%|βββββββ | 569/869 [00:07<00:04, 73.18it/s][A |
|
67%|βββββββ | 578/869 [00:07<00:03, 75.98it/s][A |
|
67%|βββββββ | 586/869 [00:07<00:03, 73.37it/s][A |
|
68%|βββββββ | 594/869 [00:07<00:03, 74.99it/s][A |
|
69%|βββββββ | 603/869 [00:07<00:03, 78.26it/s][A |
|
70%|βββββββ | 611/869 [00:07<00:03, 77.04it/s][A |
|
71%|βββββββ | 619/869 [00:08<00:03, 77.37it/s][A |
|
72%|ββββββββ | 627/869 [00:08<00:03, 75.86it/s][A |
|
73%|ββββββββ | 635/869 [00:08<00:03, 73.79it/s][A |
|
74%|ββββββββ | 644/869 [00:08<00:02, 77.27it/s][A |
|
75%|ββββββββ | 653/869 [00:08<00:02, 79.43it/s][A |
|
76%|ββββββββ | 661/869 [00:08<00:02, 76.75it/s][A |
|
77%|ββββββββ | 670/869 [00:08<00:02, 79.36it/s][A |
|
78%|ββββββββ | 679/869 [00:08<00:02, 82.14it/s][A |
|
79%|ββββββββ | 688/869 [00:09<00:02, 70.58it/s][A |
|
80%|ββββββββ | 696/869 [00:09<00:02, 72.95it/s][A |
|
81%|ββββββββ | 704/869 [00:09<00:02, 72.45it/s][A |
|
82%|βββββββββ | 713/869 [00:09<00:02, 76.22it/s][A |
|
83%|βββββββββ | 721/869 [00:09<00:01, 76.48it/s][A |
|
84%|βββββββββ | 730/869 [00:09<00:01, 78.48it/s][A |
|
85%|βββββββββ | 738/869 [00:09<00:01, 77.62it/s][A |
|
86%|βββββββββ | 746/869 [00:09<00:01, 78.12it/s][A |
|
87%|βββββββββ | 754/869 [00:09<00:01, 75.65it/s][A |
|
88%|βββββββββ | 763/869 [00:09<00:01, 78.80it/s][A |
|
89%|βββββββββ | 771/869 [00:10<00:01, 73.95it/s][A |
|
90%|βββββββββ | 779/869 [00:10<00:01, 65.06it/s][A |
|
91%|βββββββββ | 788/869 [00:10<00:01, 69.56it/s][A |
|
92%|ββββββββββ| 797/869 [00:10<00:00, 73.01it/s][A |
|
93%|ββββββββββ| 805/869 [00:10<00:00, 73.73it/s][A |
|
94%|ββββββββββ| 814/869 [00:10<00:00, 75.79it/s][A |
|
95%|ββββββββββ| 822/869 [00:10<00:00, 75.50it/s][A |
|
96%|ββββββββββ| 831/869 [00:10<00:00, 75.78it/s][A |
|
97%|ββββββββββ| 840/869 [00:11<00:00, 77.68it/s][A |
|
98%|ββββββββββ| 849/869 [00:11<00:00, 79.00it/s][A |
|
99%|ββββββββββ| 857/869 [00:11<00:00, 79.09it/s][A |
|
100%|ββββββββββ| 865/869 [00:11<00:00, 73.04it/s][A
|
|
[A
10%|β | 507/5070 [03:33<27:23, 2.78it/s] |
|
100%|ββββββββββ| 869/869 [00:15<00:00, 73.04it/s][A |
|
[A[INFO|trainer.py:3503] 2024-09-09 12:53:44,013 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-507 |
|
[INFO|configuration_utils.py:472] 2024-09-09 12:53:44,015 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-507/config.json |
|
[INFO|modeling_utils.py:2799] 2024-09-09 12:53:44,902 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-507/model.safetensors |
|
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:53:44,903 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-507/tokenizer_config.json |
|
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:53:44,903 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-507/special_tokens_map.json |
|
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:53:48,529 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json |
|
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:53:48,529 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json |
|
10%|β | 508/5070 [03:38<7:59:31, 6.31s/it]
10%|β | 509/5070 [03:38<5:43:00, 4.51s/it]
10%|β | 510/5070 [03:39<4:09:49, 3.29s/it]
10%|β | 511/5070 [03:39<3:02:23, 2.40s/it]
10%|β | 512/5070 [03:39<2:14:43, 1.77s/it]
10%|β | 513/5070 [03:40<1:43:58, 1.37s/it]
10%|β | 514/5070 [03:40<1:22:41, 1.09s/it]
10%|β | 515/5070 [03:40<1:04:22, 1.18it/s]
10%|β | 516/5070 [03:41<52:24, 1.45it/s]
10%|β | 517/5070 [03:41<48:49, 1.55it/s]
10%|β | 518/5070 [03:42<46:44, 1.62it/s]
10%|β | 519/5070 [03:42<39:54, 1.90it/s]
10%|β | 520/5070 [03:42<34:40, 2.19it/s]
10%|β | 521/5070 [03:43<32:48, 2.31it/s]
10%|β | 522/5070 [03:43<31:00, 2.44it/s]
10%|β | 523/5070 [03:43<27:25, 2.76it/s]
10%|β | 524/5070 [03:44<26:38, 2.84it/s]
10%|β | 525/5070 [03:44<27:04, 2.80it/s]
10%|β | 526/5070 [03:44<27:18, 2.77it/s]
10%|β | 527/5070 [03:45<27:06, 2.79it/s]
10%|β | 528/5070 [03:45<27:34, 2.75it/s]
10%|β | 529/5070 [03:45<25:33, 2.96it/s]
10%|β | 530/5070 [03:46<27:32, 2.75it/s]
10%|β | 531/5070 [03:46<28:24, 2.66it/s]
10%|β | 532/5070 [03:47<26:56, 2.81it/s]
11%|β | 533/5070 [03:47<26:50, 2.82it/s]
11%|β | 534/5070 [03:47<25:43, 2.94it/s]
11%|β | 535/5070 [03:48<27:07, 2.79it/s]
11%|β | 536/5070 [03:48<27:33, 2.74it/s]
11%|β | 537/5070 [03:48<29:37, 2.55it/s]
11%|β | 538/5070 [03:49<32:00, 2.36it/s]
11%|β | 539/5070 [03:49<29:10, 2.59it/s]
11%|β | 540/5070 [03:50<28:23, 2.66it/s]
11%|β | 541/5070 [03:50<28:24, 2.66it/s]
11%|β | 542/5070 [03:50<29:45, 2.54it/s]
11%|β | 543/5070 [03:51<32:20, 2.33it/s]
11%|β | 544/5070 [03:51<32:47, 2.30it/s]
11%|β | 545/5070 [03:52<32:17, 2.34it/s]
11%|β | 546/5070 [03:52<29:43, 2.54it/s]
11%|β | 547/5070 [03:52<29:53, 2.52it/s]
11%|β | 548/5070 [03:53<28:05, 2.68it/s]
11%|β | 549/5070 [03:53<27:40, 2.72it/s]
11%|β | 550/5070 [03:53<25:17, 2.98it/s]
11%|β | 551/5070 [03:54<26:11, 2.87it/s]
11%|β | 552/5070 [03:54<26:47, 2.81it/s]
11%|β | 553/5070 [03:55<27:54, 2.70it/s]
11%|β | 554/5070 [03:55<31:30, 2.39it/s]
11%|β | 555/5070 [03:55<31:08, 2.42it/s]
11%|β | 556/5070 [03:56<28:54, 2.60it/s]
11%|β | 557/5070 [03:56<28:31, 2.64it/s]
11%|β | 558/5070 [03:56<27:29, 2.74it/s]
11%|β | 559/5070 [03:57<30:01, 2.50it/s]
11%|β | 560/5070 [03:57<28:51, 2.60it/s]
11%|β | 561/5070 [03:58<27:48, 2.70it/s]
11%|β | 562/5070 [03:58<27:04, 2.78it/s]
11%|β | 563/5070 [03:58<28:37, 2.62it/s]
11%|β | 564/5070 [03:59<32:25, 2.32it/s]
11%|β | 565/5070 [03:59<32:00, 2.35it/s]
11%|β | 566/5070 [04:00<32:54, 2.28it/s]
11%|β | 567/5070 [04:00<32:14, 2.33it/s]
11%|β | 568/5070 [04:01<31:07, 2.41it/s]
11%|β | 569/5070 [04:01<30:28, 2.46it/s]
11%|β | 570/5070 [04:01<28:51, 2.60it/s]
11%|ββ | 571/5070 [04:02<27:02, 2.77it/s]
11%|ββ | 572/5070 [04:02<27:49, 2.69it/s]
11%|ββ | 573/5070 [04:03<29:30, 2.54it/s]
11%|ββ | 574/5070 [04:03<29:06, 2.57it/s]
11%|ββ | 575/5070 [04:03<27:59, 2.68it/s]
11%|ββ | 576/5070 [04:04<27:40, 2.71it/s]
11%|ββ | 577/5070 [04:04<26:59, 2.78it/s]
11%|ββ | 578/5070 [04:04<27:13, 2.75it/s]
11%|ββ | 579/5070 [04:05<27:11, 2.75it/s]
11%|ββ | 580/5070 [04:05<27:55, 2.68it/s]
11%|ββ | 581/5070 [04:05<27:12, 2.75it/s]
11%|ββ | 582/5070 [04:06<25:46, 2.90it/s]
11%|ββ | 583/5070 [04:06<26:23, 2.83it/s]
12%|ββ | 584/5070 [04:06<26:58, 2.77it/s]
12%|ββ | 585/5070 [04:07<28:33, 2.62it/s]
12%|ββ | 586/5070 [04:07<28:31, 2.62it/s]
12%|ββ | 587/5070 [04:08<26:37, 2.81it/s]
12%|ββ | 588/5070 [04:08<26:51, 2.78it/s]
12%|ββ | 589/5070 [04:08<28:01, 2.66it/s]
12%|ββ | 590/5070 [04:09<31:48, 2.35it/s]
12%|ββ | 591/5070 [04:09<28:30, 2.62it/s]
12%|ββ | 592/5070 [04:10<29:37, 2.52it/s]
12%|ββ | 593/5070 [04:10<28:26, 2.62it/s]
12%|ββ | 594/5070 [04:10<28:30, 2.62it/s]
12%|ββ | 595/5070 [04:11<26:28, 2.82it/s]
12%|ββ | 596/5070 [04:11<24:56, 2.99it/s]
12%|ββ | 597/5070 [04:11<26:43, 2.79it/s]
12%|ββ | 598/5070 [04:12<26:47, 2.78it/s]
12%|ββ | 599/5070 [04:12<28:46, 2.59it/s]
12%|ββ | 600/5070 [04:12<28:04, 2.65it/s]
12%|ββ | 601/5070 [04:13<27:50, 2.68it/s]
12%|ββ | 602/5070 [04:13<28:36, 2.60it/s]
12%|ββ | 603/5070 [04:14<31:30, 2.36it/s]
12%|ββ | 604/5070 [04:14<30:04, 2.48it/s]
12%|ββ | 605/5070 [04:15<29:27, 2.53it/s]
12%|ββ | 606/5070 [04:15<27:32, 2.70it/s]
12%|ββ | 607/5070 [04:15<26:02, 2.86it/s]
12%|ββ | 608/5070 [04:15<24:33, 3.03it/s]
12%|ββ | 609/5070 [04:16<27:46, 2.68it/s]
12%|ββ | 610/5070 [04:16<27:02, 2.75it/s]
12%|ββ | 611/5070 [04:17<27:23, 2.71it/s]
12%|ββ | 612/5070 [04:17<26:46, 2.78it/s]
12%|ββ | 613/5070 [04:17<27:05, 2.74it/s]
12%|ββ | 614/5070 [04:18<27:24, 2.71it/s]
12%|ββ | 615/5070 [04:18<27:54, 2.66it/s]
12%|ββ | 616/5070 [04:18<28:24, 2.61it/s]
12%|ββ | 617/5070 [04:19<27:37, 2.69it/s]
12%|ββ | 618/5070 [04:19<27:37, 2.69it/s]
12%|ββ | 619/5070 [04:20<27:19, 2.71it/s]
12%|ββ | 620/5070 [04:20<32:19, 2.29it/s]
12%|ββ | 621/5070 [04:21<33:26, 2.22it/s] |