Rodrigo1771's picture
Training in progress, epoch 1
6bb1803 verified
raw
history blame
60 kB
2024-09-09 12:49:35.169739: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-09-09 12:49:35.188435: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2024-09-09 12:49:35.210470: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2024-09-09 12:49:35.217107: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2024-09-09 12:49:35.233109: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-09-09 12:49:36.523400: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of πŸ€— Transformers. Use `eval_strategy` instead
warnings.warn(
09/09/2024 12:49:38 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
09/09/2024 12:49:38 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
_n_gpu=1,
accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
batch_eval_metrics=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
dataloader_prefetch_factor=None,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
dispatch_batches=None,
do_eval=True,
do_predict=True,
do_train=True,
eval_accumulation_steps=None,
eval_delay=0,
eval_do_concat_batches=True,
eval_on_start=False,
eval_steps=None,
eval_strategy=epoch,
eval_use_gather_object=False,
evaluation_strategy=epoch,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
gradient_accumulation_steps=2,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=True,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=length,
load_best_model_at_end=True,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=/content/dissertation/scripts/ner/output/tb,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=f1,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=10.0,
optim=adamw_torch,
optim_args=None,
optim_target_modules=None,
output_dir=/content/dissertation/scripts/ner/output,
overwrite_output_dir=True,
past_index=-1,
per_device_eval_batch_size=8,
per_device_train_batch_size=32,
prediction_loss_only=False,
push_to_hub=True,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=['tensorboard'],
restore_callback_states_from_checkpoint=False,
resume_from_checkpoint=None,
run_name=/content/dissertation/scripts/ner/output,
save_on_each_node=False,
save_only_model=False,
save_safetensors=True,
save_steps=500,
save_strategy=epoch,
save_total_limit=None,
seed=42,
skip_memory_metrics=True,
split_batches=None,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torch_empty_cache_steps=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)
Downloading builder script: 0%| | 0.00/3.62k [00:00<?, ?B/s] Downloading builder script: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3.62k/3.62k [00:00<00:00, 15.3kB/s] Downloading builder script: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3.62k/3.62k [00:00<00:00, 15.3kB/s]
Downloading data: 0%| | 0.00/33.9M [00:00<?, ?B/s] Downloading data: 31%|β–ˆβ–ˆβ–ˆ | 10.5M/33.9M [00:00<00:02, 10.5MB/s] Downloading data: 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 21.0M/33.9M [00:01<00:00, 15.9MB/s] Downloading data: 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 31.5M/33.9M [00:01<00:00, 18.7MB/s] Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 33.9M/33.9M [00:01<00:00, 17.8MB/s]
Downloading data: 0%| | 0.00/6.66M [00:00<?, ?B/s] Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6.66M/6.66M [00:00<00:00, 7.41MB/s] Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6.66M/6.66M [00:00<00:00, 7.36MB/s]
Downloading data: 0%| | 0.00/12.0M [00:00<?, ?B/s] Downloading data: 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 10.5M/12.0M [00:01<00:00, 8.44MB/s] Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 12.0M/12.0M [00:01<00:00, 9.56MB/s]
Generating train split: 0 examples [00:00, ? examples/s] Generating train split: 645 examples [00:00, 6422.99 examples/s] Generating train split: 1585 examples [00:00, 6310.50 examples/s] Generating train split: 2239 examples [00:00, 6396.54 examples/s] Generating train split: 2942 examples [00:00, 6620.97 examples/s] Generating train split: 3958 examples [00:00, 6683.92 examples/s] Generating train split: 4976 examples [00:00, 6719.22 examples/s] Generating train split: 5941 examples [00:00, 6616.84 examples/s] Generating train split: 6894 examples [00:01, 6523.22 examples/s] Generating train split: 7910 examples [00:01, 6602.52 examples/s] Generating train split: 8903 examples [00:01, 6604.68 examples/s] Generating train split: 9878 examples [00:01, 6568.43 examples/s] Generating train split: 10839 examples [00:01, 6515.53 examples/s] Generating train split: 11854 examples [00:01, 6589.56 examples/s] Generating train split: 12845 examples [00:01, 6591.65 examples/s] Generating train split: 13855 examples [00:02, 6626.64 examples/s] Generating train split: 14832 examples [00:02, 6589.42 examples/s] Generating train split: 15831 examples [00:02, 6606.16 examples/s] Generating train split: 16856 examples [00:02, 6669.54 examples/s] Generating train split: 17866 examples [00:02, 6684.58 examples/s] Generating train split: 18853 examples [00:02, 6648.95 examples/s] Generating train split: 19863 examples [00:03, 6672.36 examples/s] Generating train split: 20537 examples [00:03, 6685.56 examples/s] Generating train split: 21553 examples [00:03, 6712.14 examples/s] Generating train split: 22557 examples [00:03, 6703.84 examples/s] Generating train split: 23543 examples [00:03, 6658.95 examples/s] Generating train split: 24494 examples [00:03, 6558.35 examples/s] Generating train split: 25486 examples [00:03, 6571.56 examples/s] Generating train split: 26448 examples [00:04, 6522.66 examples/s] Generating train split: 27423 examples [00:04, 6510.51 examples/s] Generating train split: 28421 examples [00:04, 6550.53 examples/s] Generating train split: 29376 examples [00:04, 6485.54 examples/s] Generating train split: 30240 examples [00:04, 4496.54 examples/s] Generating train split: 30931 examples [00:04, 4904.64 examples/s] Generating train split: 31559 examples [00:05, 5172.47 examples/s] Generating train split: 32216 examples [00:05, 5474.88 examples/s] Generating train split: 32447 examples [00:05, 6307.49 examples/s]
Generating validation split: 0 examples [00:00, ? examples/s] Generating validation split: 753 examples [00:00, 7503.26 examples/s] Generating validation split: 1823 examples [00:00, 7241.51 examples/s] Generating validation split: 2828 examples [00:00, 6970.53 examples/s] Generating validation split: 3879 examples [00:00, 6983.17 examples/s] Generating validation split: 4923 examples [00:00, 6965.65 examples/s] Generating validation split: 5963 examples [00:00, 6947.29 examples/s] Generating validation split: 6946 examples [00:00, 6916.82 examples/s] Generating validation split: 6946 examples [00:01, 6918.93 examples/s]
Generating test split: 0 examples [00:00, ? examples/s] Generating test split: 837 examples [00:00, 8333.65 examples/s] Generating test split: 1992 examples [00:00, 7893.19 examples/s] Generating test split: 3118 examples [00:00, 7697.73 examples/s] Generating test split: 3905 examples [00:00, 7750.41 examples/s] Generating test split: 5029 examples [00:00, 7643.58 examples/s] Generating test split: 5922 examples [00:00, 8001.63 examples/s] Generating test split: 6745 examples [00:00, 8065.26 examples/s] Generating test split: 7957 examples [00:01, 8066.19 examples/s] Generating test split: 9088 examples [00:01, 7878.75 examples/s] Generating test split: 10230 examples [00:01, 7788.78 examples/s] Generating test split: 11023 examples [00:01, 7817.04 examples/s] Generating test split: 11883 examples [00:01, 8015.39 examples/s] Generating test split: 12954 examples [00:01, 7696.61 examples/s] Generating test split: 14049 examples [00:01, 7561.13 examples/s] Generating test split: 14715 examples [00:01, 7754.44 examples/s]
[INFO|configuration_utils.py:733] 2024-09-09 12:49:56,508 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/config.json
[INFO|configuration_utils.py:800] 2024-09-09 12:49:56,512 >> Model config BertConfig {
"_name_or_path": "michiyasunaga/BioLinkBERT-base",
"architectures": [
"BertModel"
],
"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"finetuning_task": "ner",
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"id2label": {
"0": "O",
"1": "B-FARMACO",
"2": "I-FARMACO"
},
"initializer_range": 0.02,
"intermediate_size": 3072,
"label2id": {
"B-FARMACO": 1,
"I-FARMACO": 2,
"O": 0
},
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"transformers_version": "4.44.2",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 28895
}
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:49:58,923 >> loading file vocab.txt from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/vocab.txt
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:49:58,923 >> loading file tokenizer.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/tokenizer.json
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:49:58,923 >> loading file added_tokens.json from cache at None
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:49:58,923 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/special_tokens_map.json
[INFO|tokenization_utils_base.py:2269] 2024-09-09 12:49:58,923 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/tokenizer_config.json
/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
warnings.warn(
[INFO|modeling_utils.py:3678] 2024-09-09 12:50:02,660 >> loading weights file pytorch_model.bin from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/pytorch_model.bin
[INFO|modeling_utils.py:4497] 2024-09-09 12:50:02,740 >> Some weights of the model checkpoint at michiyasunaga/BioLinkBERT-base were not used when initializing BertForTokenClassification: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight']
- This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
[WARNING|modeling_utils.py:4509] 2024-09-09 12:50:02,740 >> Some weights of BertForTokenClassification were not initialized from the model checkpoint at michiyasunaga/BioLinkBERT-base and are newly initialized: ['classifier.bias', 'classifier.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Map: 0%| | 0/32447 [00:00<?, ? examples/s] Map: 3%|β–Ž | 1000/32447 [00:00<00:03, 9362.33 examples/s] Map: 9%|β–‰ | 3000/32447 [00:00<00:02, 10280.00 examples/s] Map: 15%|β–ˆβ–Œ | 5000/32447 [00:00<00:02, 10674.68 examples/s] Map: 22%|β–ˆβ–ˆβ– | 7000/32447 [00:00<00:02, 10414.12 examples/s] Map: 28%|β–ˆβ–ˆβ–Š | 9000/32447 [00:00<00:02, 10509.84 examples/s] Map: 34%|β–ˆβ–ˆβ–ˆβ– | 11000/32447 [00:01<00:02, 10515.16 examples/s] Map: 40%|β–ˆβ–ˆβ–ˆβ–ˆ | 13000/32447 [00:01<00:01, 10620.05 examples/s] Map: 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 15000/32447 [00:01<00:01, 10528.03 examples/s] Map: 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 17000/32447 [00:01<00:01, 10624.94 examples/s] Map: 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 19000/32447 [00:01<00:01, 10748.91 examples/s] Map: 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 21000/32447 [00:01<00:01, 10823.70 examples/s] Map: 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 23000/32447 [00:02<00:00, 10784.11 examples/s] Map: 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 25000/32447 [00:02<00:00, 7869.26 examples/s] Map: 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 27000/32447 [00:02<00:00, 8538.25 examples/s] Map: 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 29000/32447 [00:02<00:00, 9022.56 examples/s] Map: 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 31000/32447 [00:03<00:00, 9440.41 examples/s] Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 32447/32447 [00:03<00:00, 9474.30 examples/s] Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 32447/32447 [00:03<00:00, 9831.82 examples/s]
Map: 0%| | 0/6946 [00:00<?, ? examples/s] Map: 29%|β–ˆβ–ˆβ–‰ | 2000/6946 [00:00<00:00, 11608.63 examples/s] Map: 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 4000/6946 [00:00<00:00, 11380.90 examples/s] Map: 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 6000/6946 [00:00<00:00, 11392.48 examples/s] Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6946/6946 [00:00<00:00, 11297.05 examples/s]
Map: 0%| | 0/14715 [00:00<?, ? examples/s] Map: 14%|β–ˆβ–Ž | 2000/14715 [00:00<00:01, 12264.98 examples/s] Map: 27%|β–ˆβ–ˆβ–‹ | 4000/14715 [00:00<00:00, 12320.92 examples/s] Map: 41%|β–ˆβ–ˆβ–ˆβ–ˆ | 6000/14715 [00:00<00:00, 12772.71 examples/s] Map: 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 8000/14715 [00:00<00:00, 12979.51 examples/s] Map: 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 10000/14715 [00:00<00:00, 12993.32 examples/s] Map: 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 12000/14715 [00:00<00:00, 13101.07 examples/s] Map: 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 14000/14715 [00:01<00:00, 12505.75 examples/s] Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 14715/14715 [00:01<00:00, 12533.17 examples/s]
/content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library πŸ€— Evaluate: https://huggingface.co/docs/evaluate
metric = load_metric("seqeval", trust_remote_code=True)
[INFO|trainer.py:811] 2024-09-09 12:50:10,148 >> The following columns in the training set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, tokens, ner_tags. If id, tokens, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:2134] 2024-09-09 12:50:10,704 >> ***** Running training *****
[INFO|trainer.py:2135] 2024-09-09 12:50:10,704 >> Num examples = 32,447
[INFO|trainer.py:2136] 2024-09-09 12:50:10,704 >> Num Epochs = 10
[INFO|trainer.py:2137] 2024-09-09 12:50:10,704 >> Instantaneous batch size per device = 32
[INFO|trainer.py:2140] 2024-09-09 12:50:10,704 >> Total train batch size (w. parallel, distributed & accumulation) = 64
[INFO|trainer.py:2141] 2024-09-09 12:50:10,704 >> Gradient Accumulation steps = 2
[INFO|trainer.py:2142] 2024-09-09 12:50:10,704 >> Total optimization steps = 5,070
[INFO|trainer.py:2143] 2024-09-09 12:50:10,705 >> Number of trainable parameters = 107,644,419
0%| | 0/5070 [00:00<?, ?it/s] 0%| | 1/5070 [00:01<1:55:56, 1.37s/it] 0%| | 2/5070 [00:01<1:01:02, 1.38it/s] 0%| | 3/5070 [00:01<43:59, 1.92it/s] 0%| | 4/5070 [00:02<37:03, 2.28it/s] 0%| | 5/5070 [00:02<33:54, 2.49it/s] 0%| | 6/5070 [00:02<29:56, 2.82it/s] 0%| | 7/5070 [00:03<29:13, 2.89it/s] 0%| | 8/5070 [00:03<29:19, 2.88it/s] 0%| | 9/5070 [00:03<28:01, 3.01it/s] 0%| | 10/5070 [00:04<29:27, 2.86it/s] 0%| | 11/5070 [00:04<31:52, 2.65it/s] 0%| | 12/5070 [00:04<31:16, 2.70it/s] 0%| | 13/5070 [00:05<30:19, 2.78it/s] 0%| | 14/5070 [00:05<32:35, 2.59it/s] 0%| | 15/5070 [00:06<29:33, 2.85it/s] 0%| | 16/5070 [00:06<29:08, 2.89it/s] 0%| | 17/5070 [00:06<32:23, 2.60it/s] 0%| | 18/5070 [00:07<32:56, 2.56it/s] 0%| | 19/5070 [00:07<30:14, 2.78it/s] 0%| | 20/5070 [00:07<31:25, 2.68it/s] 0%| | 21/5070 [00:08<28:05, 3.00it/s] 0%| | 22/5070 [00:08<27:40, 3.04it/s] 0%| | 23/5070 [00:08<29:31, 2.85it/s] 0%| | 24/5070 [00:09<27:57, 3.01it/s] 0%| | 25/5070 [00:09<29:57, 2.81it/s] 1%| | 26/5070 [00:09<30:14, 2.78it/s] 1%| | 27/5070 [00:10<31:00, 2.71it/s] 1%| | 28/5070 [00:10<33:13, 2.53it/s] 1%| | 29/5070 [00:11<31:44, 2.65it/s] 1%| | 30/5070 [00:11<34:06, 2.46it/s] 1%| | 31/5070 [00:11<31:33, 2.66it/s] 1%| | 32/5070 [00:12<30:32, 2.75it/s] 1%| | 33/5070 [00:12<32:34, 2.58it/s] 1%| | 34/5070 [00:13<33:22, 2.51it/s] 1%| | 35/5070 [00:13<32:11, 2.61it/s] 1%| | 36/5070 [00:13<29:47, 2.82it/s] 1%| | 37/5070 [00:14<34:03, 2.46it/s] 1%| | 38/5070 [00:14<33:12, 2.53it/s] 1%| | 39/5070 [00:15<32:01, 2.62it/s] 1%| | 40/5070 [00:15<32:04, 2.61it/s] 1%| | 41/5070 [00:15<31:28, 2.66it/s] 1%| | 42/5070 [00:16<29:43, 2.82it/s] 1%| | 43/5070 [00:16<29:54, 2.80it/s] 1%| | 44/5070 [00:16<30:08, 2.78it/s] 1%| | 45/5070 [00:17<28:16, 2.96it/s] 1%| | 46/5070 [00:17<28:34, 2.93it/s] 1%| | 47/5070 [00:17<29:04, 2.88it/s] 1%| | 48/5070 [00:18<30:31, 2.74it/s] 1%| | 49/5070 [00:18<29:37, 2.82it/s] 1%| | 50/5070 [00:19<33:53, 2.47it/s] 1%| | 51/5070 [00:19<34:07, 2.45it/s] 1%| | 52/5070 [00:19<34:08, 2.45it/s] 1%| | 53/5070 [00:20<31:49, 2.63it/s] 1%| | 54/5070 [00:20<31:13, 2.68it/s] 1%| | 55/5070 [00:20<31:05, 2.69it/s] 1%| | 56/5070 [00:21<30:58, 2.70it/s] 1%| | 57/5070 [00:21<29:45, 2.81it/s] 1%| | 58/5070 [00:21<30:11, 2.77it/s] 1%| | 59/5070 [00:22<30:56, 2.70it/s] 1%| | 60/5070 [00:22<31:45, 2.63it/s] 1%| | 61/5070 [00:23<31:48, 2.63it/s] 1%| | 62/5070 [00:23<31:35, 2.64it/s] 1%| | 63/5070 [00:23<31:04, 2.69it/s] 1%|▏ | 64/5070 [00:24<28:24, 2.94it/s] 1%|▏ | 65/5070 [00:24<27:01, 3.09it/s] 1%|▏ | 66/5070 [00:24<30:56, 2.70it/s] 1%|▏ | 67/5070 [00:25<33:25, 2.50it/s] 1%|▏ | 68/5070 [00:25<37:18, 2.23it/s] 1%|▏ | 69/5070 [00:26<39:18, 2.12it/s] 1%|▏ | 70/5070 [00:26<35:57, 2.32it/s] 1%|▏ | 71/5070 [00:27<35:19, 2.36it/s] 1%|▏ | 72/5070 [00:27<36:17, 2.30it/s] 1%|▏ | 73/5070 [00:28<38:25, 2.17it/s] 1%|▏ | 74/5070 [00:28<35:23, 2.35it/s] 1%|▏ | 75/5070 [00:28<35:34, 2.34it/s] 1%|▏ | 76/5070 [00:29<35:16, 2.36it/s] 2%|▏ | 77/5070 [00:29<37:14, 2.23it/s] 2%|▏ | 78/5070 [00:30<36:13, 2.30it/s] 2%|▏ | 79/5070 [00:30<37:43, 2.20it/s] 2%|▏ | 80/5070 [00:31<35:44, 2.33it/s] 2%|▏ | 81/5070 [00:31<35:40, 2.33it/s] 2%|▏ | 82/5070 [00:31<32:56, 2.52it/s] 2%|▏ | 83/5070 [00:32<32:34, 2.55it/s] 2%|▏ | 84/5070 [00:32<36:48, 2.26it/s] 2%|▏ | 85/5070 [00:33<34:40, 2.40it/s] 2%|▏ | 86/5070 [00:33<35:53, 2.31it/s] 2%|▏ | 87/5070 [00:34<38:14, 2.17it/s] 2%|▏ | 88/5070 [00:34<37:25, 2.22it/s] 2%|▏ | 89/5070 [00:34<33:37, 2.47it/s] 2%|▏ | 90/5070 [00:35<32:47, 2.53it/s] 2%|▏ | 91/5070 [00:35<30:14, 2.74it/s] 2%|▏ | 92/5070 [00:36<34:18, 2.42it/s] 2%|▏ | 93/5070 [00:36<33:53, 2.45it/s] 2%|▏ | 94/5070 [00:36<34:27, 2.41it/s] 2%|▏ | 95/5070 [00:37<32:28, 2.55it/s] 2%|▏ | 96/5070 [00:37<31:05, 2.67it/s] 2%|▏ | 97/5070 [00:37<28:50, 2.87it/s] 2%|▏ | 98/5070 [00:38<32:59, 2.51it/s] 2%|▏ | 99/5070 [00:38<31:29, 2.63it/s] 2%|▏ | 100/5070 [00:39<31:13, 2.65it/s] 2%|▏ | 101/5070 [00:39<34:40, 2.39it/s] 2%|▏ | 102/5070 [00:39<31:42, 2.61it/s] 2%|▏ | 103/5070 [00:40<32:17, 2.56it/s] 2%|▏ | 104/5070 [00:40<30:58, 2.67it/s] 2%|▏ | 105/5070 [00:41<29:59, 2.76it/s] 2%|▏ | 106/5070 [00:41<36:53, 2.24it/s] 2%|▏ | 107/5070 [00:42<34:40, 2.39it/s] 2%|▏ | 108/5070 [00:42<33:38, 2.46it/s] 2%|▏ | 109/5070 [00:42<33:31, 2.47it/s] 2%|▏ | 110/5070 [00:43<31:03, 2.66it/s] 2%|▏ | 111/5070 [00:43<31:56, 2.59it/s] 2%|▏ | 112/5070 [00:43<31:17, 2.64it/s] 2%|▏ | 113/5070 [00:44<31:57, 2.58it/s] 2%|▏ | 114/5070 [00:44<29:33, 2.80it/s] 2%|▏ | 115/5070 [00:45<31:12, 2.65it/s] 2%|▏ | 116/5070 [00:45<31:17, 2.64it/s] 2%|▏ | 117/5070 [00:45<33:04, 2.50it/s] 2%|▏ | 118/5070 [00:46<36:26, 2.26it/s] 2%|▏ | 119/5070 [00:47<42:31, 1.94it/s] 2%|▏ | 120/5070 [00:47<37:20, 2.21it/s] 2%|▏ | 121/5070 [00:47<35:21, 2.33it/s] 2%|▏ | 122/5070 [00:48<34:00, 2.43it/s] 2%|▏ | 123/5070 [00:48<32:01, 2.57it/s] 2%|▏ | 124/5070 [00:48<31:24, 2.62it/s] 2%|▏ | 125/5070 [00:49<29:14, 2.82it/s] 2%|▏ | 126/5070 [00:49<31:42, 2.60it/s] 3%|β–Ž | 127/5070 [00:50<36:51, 2.24it/s] 3%|β–Ž | 128/5070 [00:50<35:05, 2.35it/s] 3%|β–Ž | 129/5070 [00:50<32:31, 2.53it/s] 3%|β–Ž | 130/5070 [00:51<33:29, 2.46it/s] 3%|β–Ž | 131/5070 [00:51<34:54, 2.36it/s] 3%|β–Ž | 132/5070 [00:52<32:01, 2.57it/s] 3%|β–Ž | 133/5070 [00:52<30:11, 2.73it/s] 3%|β–Ž | 134/5070 [00:52<27:55, 2.95it/s] 3%|β–Ž | 135/5070 [00:53<27:47, 2.96it/s] 3%|β–Ž | 136/5070 [00:53<34:07, 2.41it/s] 3%|β–Ž | 137/5070 [00:54<36:48, 2.23it/s] 3%|β–Ž | 138/5070 [00:54<34:08, 2.41it/s] 3%|β–Ž | 139/5070 [00:54<32:28, 2.53it/s] 3%|β–Ž | 140/5070 [00:55<32:32, 2.53it/s] 3%|β–Ž | 141/5070 [00:55<34:10, 2.40it/s] 3%|β–Ž | 142/5070 [00:56<33:01, 2.49it/s] 3%|β–Ž | 143/5070 [00:56<34:43, 2.36it/s] 3%|β–Ž | 144/5070 [00:56<32:40, 2.51it/s] 3%|β–Ž | 145/5070 [00:57<34:42, 2.37it/s] 3%|β–Ž | 146/5070 [00:57<33:20, 2.46it/s] 3%|β–Ž | 147/5070 [00:58<38:03, 2.16it/s] 3%|β–Ž | 148/5070 [00:58<38:10, 2.15it/s] 3%|β–Ž | 149/5070 [00:59<39:25, 2.08it/s] 3%|β–Ž | 150/5070 [00:59<37:15, 2.20it/s] 3%|β–Ž | 151/5070 [01:00<35:10, 2.33it/s] 3%|β–Ž | 152/5070 [01:00<35:57, 2.28it/s] 3%|β–Ž | 153/5070 [01:00<32:39, 2.51it/s] 3%|β–Ž | 154/5070 [01:01<31:50, 2.57it/s] 3%|β–Ž | 155/5070 [01:01<30:24, 2.69it/s] 3%|β–Ž | 156/5070 [01:01<29:07, 2.81it/s] 3%|β–Ž | 157/5070 [01:02<27:52, 2.94it/s] 3%|β–Ž | 158/5070 [01:02<26:45, 3.06it/s] 3%|β–Ž | 159/5070 [01:02<27:09, 3.01it/s] 3%|β–Ž | 160/5070 [01:03<28:05, 2.91it/s] 3%|β–Ž | 161/5070 [01:03<28:55, 2.83it/s] 3%|β–Ž | 162/5070 [01:04<32:05, 2.55it/s] 3%|β–Ž | 163/5070 [01:04<32:59, 2.48it/s] 3%|β–Ž | 164/5070 [01:04<33:29, 2.44it/s] 3%|β–Ž | 165/5070 [01:05<38:00, 2.15it/s] 3%|β–Ž | 166/5070 [01:05<37:31, 2.18it/s] 3%|β–Ž | 167/5070 [01:06<34:33, 2.36it/s] 3%|β–Ž | 168/5070 [01:06<30:48, 2.65it/s] 3%|β–Ž | 169/5070 [01:06<29:41, 2.75it/s] 3%|β–Ž | 170/5070 [01:07<28:36, 2.85it/s] 3%|β–Ž | 171/5070 [01:07<29:44, 2.74it/s] 3%|β–Ž | 172/5070 [01:07<29:24, 2.78it/s] 3%|β–Ž | 173/5070 [01:08<30:28, 2.68it/s] 3%|β–Ž | 174/5070 [01:08<31:08, 2.62it/s] 3%|β–Ž | 175/5070 [01:09<30:05, 2.71it/s] 3%|β–Ž | 176/5070 [01:09<31:47, 2.57it/s] 3%|β–Ž | 177/5070 [01:09<30:57, 2.63it/s] 4%|β–Ž | 178/5070 [01:10<30:51, 2.64it/s] 4%|β–Ž | 179/5070 [01:10<32:25, 2.51it/s] 4%|β–Ž | 180/5070 [01:11<32:40, 2.49it/s] 4%|β–Ž | 181/5070 [01:11<30:53, 2.64it/s] 4%|β–Ž | 182/5070 [01:11<29:51, 2.73it/s] 4%|β–Ž | 183/5070 [01:12<30:08, 2.70it/s] 4%|β–Ž | 184/5070 [01:12<29:08, 2.79it/s] 4%|β–Ž | 185/5070 [01:12<27:38, 2.95it/s] 4%|β–Ž | 186/5070 [01:13<29:08, 2.79it/s] 4%|β–Ž | 187/5070 [01:13<30:50, 2.64it/s] 4%|β–Ž | 188/5070 [01:13<29:46, 2.73it/s] 4%|β–Ž | 189/5070 [01:14<27:02, 3.01it/s] 4%|β–Ž | 190/5070 [01:14<32:28, 2.50it/s] 4%|▍ | 191/5070 [01:15<33:35, 2.42it/s] 4%|▍ | 192/5070 [01:15<33:34, 2.42it/s] 4%|▍ | 193/5070 [01:16<39:01, 2.08it/s] 4%|▍ | 194/5070 [01:16<38:27, 2.11it/s] 4%|▍ | 195/5070 [01:17<35:38, 2.28it/s] 4%|▍ | 196/5070 [01:17<33:20, 2.44it/s] 4%|▍ | 197/5070 [01:17<31:14, 2.60it/s] 4%|▍ | 198/5070 [01:18<32:57, 2.46it/s] 4%|▍ | 199/5070 [01:18<30:26, 2.67it/s] 4%|▍ | 200/5070 [01:19<34:45, 2.34it/s] 4%|▍ | 201/5070 [01:19<31:49, 2.55it/s] 4%|▍ | 202/5070 [01:19<32:15, 2.52it/s] 4%|▍ | 203/5070 [01:20<36:02, 2.25it/s] 4%|▍ | 204/5070 [01:20<36:30, 2.22it/s] 4%|▍ | 205/5070 [01:21<39:03, 2.08it/s] 4%|▍ | 206/5070 [01:21<36:32, 2.22it/s] 4%|▍ | 207/5070 [01:22<34:56, 2.32it/s] 4%|▍ | 208/5070 [01:22<34:18, 2.36it/s] 4%|▍ | 209/5070 [01:22<32:08, 2.52it/s] 4%|▍ | 210/5070 [01:23<31:17, 2.59it/s] 4%|▍ | 211/5070 [01:23<29:35, 2.74it/s] 4%|▍ | 212/5070 [01:23<33:09, 2.44it/s] 4%|▍ | 213/5070 [01:24<32:48, 2.47it/s] 4%|▍ | 214/5070 [01:24<36:04, 2.24it/s] 4%|▍ | 215/5070 [01:25<33:15, 2.43it/s] 4%|▍ | 216/5070 [01:25<32:15, 2.51it/s] 4%|▍ | 217/5070 [01:26<32:45, 2.47it/s] 4%|▍ | 218/5070 [01:26<32:25, 2.49it/s] 4%|▍ | 219/5070 [01:26<34:45, 2.33it/s] 4%|▍ | 220/5070 [01:27<37:32, 2.15it/s] 4%|▍ | 221/5070 [01:27<38:50, 2.08it/s] 4%|▍ | 222/5070 [01:28<34:44, 2.33it/s] 4%|▍ | 223/5070 [01:28<34:06, 2.37it/s] 4%|▍ | 224/5070 [01:29<34:41, 2.33it/s] 4%|▍ | 225/5070 [01:29<34:43, 2.33it/s] 4%|▍ | 226/5070 [01:30<34:36, 2.33it/s] 4%|▍ | 227/5070 [01:30<35:31, 2.27it/s] 4%|▍ | 228/5070 [01:30<35:10, 2.29it/s] 5%|▍ | 229/5070 [01:31<31:33, 2.56it/s] 5%|▍ | 230/5070 [01:31<29:53, 2.70it/s] 5%|▍ | 231/5070 [01:31<27:03, 2.98it/s] 5%|▍ | 232/5070 [01:32<27:04, 2.98it/s] 5%|▍ | 233/5070 [01:32<28:05, 2.87it/s] 5%|▍ | 234/5070 [01:32<27:50, 2.90it/s] 5%|▍ | 235/5070 [01:33<29:12, 2.76it/s] 5%|▍ | 236/5070 [01:33<29:10, 2.76it/s] 5%|▍ | 237/5070 [01:33<29:14, 2.75it/s] 5%|▍ | 238/5070 [01:34<28:12, 2.85it/s] 5%|▍ | 239/5070 [01:34<28:52, 2.79it/s] 5%|▍ | 240/5070 [01:35<28:58, 2.78it/s] 5%|▍ | 241/5070 [01:35<30:33, 2.63it/s] 5%|▍ | 242/5070 [01:35<27:48, 2.89it/s] 5%|▍ | 243/5070 [01:36<27:25, 2.93it/s] 5%|▍ | 244/5070 [01:36<26:48, 3.00it/s] 5%|▍ | 245/5070 [01:36<29:15, 2.75it/s] 5%|▍ | 246/5070 [01:37<27:55, 2.88it/s] 5%|▍ | 247/5070 [01:37<28:18, 2.84it/s] 5%|▍ | 248/5070 [01:37<30:50, 2.61it/s] 5%|▍ | 249/5070 [01:38<31:34, 2.54it/s] 5%|▍ | 250/5070 [01:38<30:21, 2.65it/s] 5%|▍ | 251/5070 [01:39<29:52, 2.69it/s] 5%|▍ | 252/5070 [01:39<32:46, 2.45it/s] 5%|▍ | 253/5070 [01:39<31:44, 2.53it/s] 5%|β–Œ | 254/5070 [01:40<31:13, 2.57it/s] 5%|β–Œ | 255/5070 [01:40<31:48, 2.52it/s] 5%|β–Œ | 256/5070 [01:41<31:07, 2.58it/s] 5%|β–Œ | 257/5070 [01:41<31:06, 2.58it/s] 5%|β–Œ | 258/5070 [01:41<30:15, 2.65it/s] 5%|β–Œ | 259/5070 [01:42<29:15, 2.74it/s] 5%|β–Œ | 260/5070 [01:42<31:19, 2.56it/s] 5%|β–Œ | 261/5070 [01:43<36:08, 2.22it/s] 5%|β–Œ | 262/5070 [01:43<33:22, 2.40it/s] 5%|β–Œ | 263/5070 [01:43<32:11, 2.49it/s] 5%|β–Œ | 264/5070 [01:44<29:48, 2.69it/s] 5%|β–Œ | 265/5070 [01:44<28:33, 2.80it/s] 5%|β–Œ | 266/5070 [01:44<28:52, 2.77it/s] 5%|β–Œ | 267/5070 [01:45<32:16, 2.48it/s] 5%|β–Œ | 268/5070 [01:45<33:51, 2.36it/s] 5%|β–Œ | 269/5070 [01:46<33:57, 2.36it/s] 5%|β–Œ | 270/5070 [01:46<31:25, 2.55it/s] 5%|β–Œ | 271/5070 [01:46<31:23, 2.55it/s] 5%|β–Œ | 272/5070 [01:47<32:46, 2.44it/s] 5%|β–Œ | 273/5070 [01:47<32:44, 2.44it/s] 5%|β–Œ | 274/5070 [01:48<33:13, 2.41it/s] 5%|β–Œ | 275/5070 [01:48<32:30, 2.46it/s] 5%|β–Œ | 276/5070 [01:49<32:22, 2.47it/s] 5%|β–Œ | 277/5070 [01:49<31:44, 2.52it/s] 5%|β–Œ | 278/5070 [01:49<31:56, 2.50it/s] 6%|β–Œ | 279/5070 [01:50<31:59, 2.50it/s] 6%|β–Œ | 280/5070 [01:50<30:52, 2.59it/s] 6%|β–Œ | 281/5070 [01:50<29:44, 2.68it/s] 6%|β–Œ | 282/5070 [01:51<31:30, 2.53it/s] 6%|β–Œ | 283/5070 [01:51<33:37, 2.37it/s] 6%|β–Œ | 284/5070 [01:52<32:58, 2.42it/s] 6%|β–Œ | 285/5070 [01:52<32:31, 2.45it/s] 6%|β–Œ | 286/5070 [01:53<31:45, 2.51it/s] 6%|β–Œ | 287/5070 [01:53<30:22, 2.63it/s] 6%|β–Œ | 288/5070 [01:53<28:53, 2.76it/s] 6%|β–Œ | 289/5070 [01:54<29:05, 2.74it/s] 6%|β–Œ | 290/5070 [01:54<29:51, 2.67it/s] 6%|β–Œ | 291/5070 [01:54<29:46, 2.67it/s] 6%|β–Œ | 292/5070 [01:55<28:56, 2.75it/s] 6%|β–Œ | 293/5070 [01:55<27:36, 2.88it/s] 6%|β–Œ | 294/5070 [01:55<27:28, 2.90it/s] 6%|β–Œ | 295/5070 [01:56<29:02, 2.74it/s] 6%|β–Œ | 296/5070 [01:56<34:38, 2.30it/s] 6%|β–Œ | 297/5070 [01:57<33:12, 2.40it/s] 6%|β–Œ | 298/5070 [01:57<30:01, 2.65it/s] 6%|β–Œ | 299/5070 [01:58<35:52, 2.22it/s] 6%|β–Œ | 300/5070 [01:58<32:11, 2.47it/s] 6%|β–Œ | 301/5070 [01:58<30:00, 2.65it/s] 6%|β–Œ | 302/5070 [01:59<32:15, 2.46it/s] 6%|β–Œ | 303/5070 [01:59<36:24, 2.18it/s] 6%|β–Œ | 304/5070 [02:00<32:07, 2.47it/s] 6%|β–Œ | 305/5070 [02:00<33:30, 2.37it/s] 6%|β–Œ | 306/5070 [02:00<33:06, 2.40it/s] 6%|β–Œ | 307/5070 [02:01<29:43, 2.67it/s] 6%|β–Œ | 308/5070 [02:01<34:19, 2.31it/s] 6%|β–Œ | 309/5070 [02:02<31:41, 2.50it/s] 6%|β–Œ | 310/5070 [02:02<32:56, 2.41it/s] 6%|β–Œ | 311/5070 [02:02<29:29, 2.69it/s] 6%|β–Œ | 312/5070 [02:03<33:51, 2.34it/s] 6%|β–Œ | 313/5070 [02:03<31:25, 2.52it/s] 6%|β–Œ | 314/5070 [02:04<33:19, 2.38it/s] 6%|β–Œ | 315/5070 [02:04<32:28, 2.44it/s] 6%|β–Œ | 316/5070 [02:04<31:52, 2.49it/s] 6%|β–‹ | 317/5070 [02:05<30:42, 2.58it/s] 6%|β–‹ | 318/5070 [02:05<29:19, 2.70it/s] 6%|β–‹ | 319/5070 [02:05<28:40, 2.76it/s] 6%|β–‹ | 320/5070 [02:06<27:29, 2.88it/s] 6%|β–‹ | 321/5070 [02:06<29:14, 2.71it/s] 6%|β–‹ | 322/5070 [02:07<28:11, 2.81it/s] 6%|β–‹ | 323/5070 [02:07<27:18, 2.90it/s] 6%|β–‹ | 324/5070 [02:07<29:24, 2.69it/s] 6%|β–‹ | 325/5070 [02:08<28:57, 2.73it/s] 6%|β–‹ | 326/5070 [02:08<28:15, 2.80it/s] 6%|β–‹ | 327/5070 [02:08<27:16, 2.90it/s] 6%|β–‹ | 328/5070 [02:09<28:10, 2.81it/s] 6%|β–‹ | 329/5070 [02:09<25:59, 3.04it/s] 7%|β–‹ | 330/5070 [02:09<26:56, 2.93it/s] 7%|β–‹ | 331/5070 [02:10<41:18, 1.91it/s] 7%|β–‹ | 332/5070 [02:11<37:36, 2.10it/s] 7%|β–‹ | 333/5070 [02:11<35:17, 2.24it/s] 7%|β–‹ | 334/5070 [02:11<30:48, 2.56it/s] 7%|β–‹ | 335/5070 [02:12<32:01, 2.46it/s] 7%|β–‹ | 336/5070 [02:12<30:39, 2.57it/s] 7%|β–‹ | 337/5070 [02:12<31:04, 2.54it/s] 7%|β–‹ | 338/5070 [02:13<31:22, 2.51it/s] 7%|β–‹ | 339/5070 [02:13<29:31, 2.67it/s] 7%|β–‹ | 340/5070 [02:14<32:09, 2.45it/s] 7%|β–‹ | 341/5070 [02:14<32:00, 2.46it/s] 7%|β–‹ | 342/5070 [02:14<31:12, 2.53it/s] 7%|β–‹ | 343/5070 [02:15<31:17, 2.52it/s] 7%|β–‹ | 344/5070 [02:15<31:32, 2.50it/s] 7%|β–‹ | 345/5070 [02:16<34:21, 2.29it/s] 7%|β–‹ | 346/5070 [02:16<31:52, 2.47it/s] 7%|β–‹ | 347/5070 [02:16<30:24, 2.59it/s] 7%|β–‹ | 348/5070 [02:17<29:56, 2.63it/s] 7%|β–‹ | 349/5070 [02:17<32:38, 2.41it/s] 7%|β–‹ | 350/5070 [02:18<31:33, 2.49it/s] 7%|β–‹ | 351/5070 [02:18<29:10, 2.70it/s] 7%|β–‹ | 352/5070 [02:18<29:07, 2.70it/s] 7%|β–‹ | 353/5070 [02:19<29:14, 2.69it/s] 7%|β–‹ | 354/5070 [02:19<31:25, 2.50it/s] 7%|β–‹ | 355/5070 [02:19<29:31, 2.66it/s] 7%|β–‹ | 356/5070 [02:20<27:26, 2.86it/s] 7%|β–‹ | 357/5070 [02:20<25:35, 3.07it/s] 7%|β–‹ | 358/5070 [02:20<27:36, 2.84it/s] 7%|β–‹ | 359/5070 [02:21<28:06, 2.79it/s] 7%|β–‹ | 360/5070 [02:21<28:07, 2.79it/s] 7%|β–‹ | 361/5070 [02:21<26:24, 2.97it/s] 7%|β–‹ | 362/5070 [02:22<28:17, 2.77it/s] 7%|β–‹ | 363/5070 [02:22<29:25, 2.67it/s] 7%|β–‹ | 364/5070 [02:23<26:55, 2.91it/s] 7%|β–‹ | 365/5070 [02:23<32:24, 2.42it/s] 7%|β–‹ | 366/5070 [02:24<31:13, 2.51it/s] 7%|β–‹ | 367/5070 [02:24<29:52, 2.62it/s] 7%|β–‹ | 368/5070 [02:24<28:41, 2.73it/s] 7%|β–‹ | 369/5070 [02:25<27:59, 2.80it/s] 7%|β–‹ | 370/5070 [02:25<28:45, 2.72it/s] 7%|β–‹ | 371/5070 [02:25<31:32, 2.48it/s] 7%|β–‹ | 372/5070 [02:26<28:45, 2.72it/s] 7%|β–‹ | 373/5070 [02:26<28:16, 2.77it/s] 7%|β–‹ | 374/5070 [02:26<29:23, 2.66it/s] 7%|β–‹ | 375/5070 [02:27<32:17, 2.42it/s] 7%|β–‹ | 376/5070 [02:27<30:05, 2.60it/s] 7%|β–‹ | 377/5070 [02:28<32:03, 2.44it/s] 7%|β–‹ | 378/5070 [02:28<31:05, 2.52it/s] 7%|β–‹ | 379/5070 [02:28<30:05, 2.60it/s] 7%|β–‹ | 380/5070 [02:29<32:30, 2.40it/s] 8%|β–Š | 381/5070 [02:29<31:32, 2.48it/s] 8%|β–Š | 382/5070 [02:30<34:09, 2.29it/s] 8%|β–Š | 383/5070 [02:30<33:53, 2.30it/s] 8%|β–Š | 384/5070 [02:31<32:36, 2.40it/s] 8%|β–Š | 385/5070 [02:31<32:58, 2.37it/s] 8%|β–Š | 386/5070 [02:32<33:49, 2.31it/s] 8%|β–Š | 387/5070 [02:32<34:36, 2.26it/s] 8%|β–Š | 388/5070 [02:32<30:40, 2.54it/s] 8%|β–Š | 389/5070 [02:33<33:50, 2.30it/s] 8%|β–Š | 390/5070 [02:33<34:57, 2.23it/s] 8%|β–Š | 391/5070 [02:34<31:32, 2.47it/s] 8%|β–Š | 392/5070 [02:34<29:57, 2.60it/s] 8%|β–Š | 393/5070 [02:34<28:23, 2.75it/s] 8%|β–Š | 394/5070 [02:35<28:33, 2.73it/s] 8%|β–Š | 395/5070 [02:35<29:05, 2.68it/s] 8%|β–Š | 396/5070 [02:35<29:46, 2.62it/s] 8%|β–Š | 397/5070 [02:36<27:19, 2.85it/s] 8%|β–Š | 398/5070 [02:36<28:19, 2.75it/s] 8%|β–Š | 399/5070 [02:36<28:51, 2.70it/s] 8%|β–Š | 400/5070 [02:37<28:11, 2.76it/s] 8%|β–Š | 401/5070 [02:37<29:33, 2.63it/s] 8%|β–Š | 402/5070 [02:38<31:49, 2.44it/s] 8%|β–Š | 403/5070 [02:38<31:43, 2.45it/s] 8%|β–Š | 404/5070 [02:39<31:30, 2.47it/s] 8%|β–Š | 405/5070 [02:39<29:03, 2.68it/s] 8%|β–Š | 406/5070 [02:39<29:03, 2.67it/s] 8%|β–Š | 407/5070 [02:40<30:11, 2.57it/s] 8%|β–Š | 408/5070 [02:40<30:14, 2.57it/s] 8%|β–Š | 409/5070 [02:41<33:16, 2.33it/s] 8%|β–Š | 410/5070 [02:41<30:50, 2.52it/s] 8%|β–Š | 411/5070 [02:41<30:26, 2.55it/s] 8%|β–Š | 412/5070 [02:42<30:50, 2.52it/s] 8%|β–Š | 413/5070 [02:42<33:27, 2.32it/s] 8%|β–Š | 414/5070 [02:43<32:54, 2.36it/s] 8%|β–Š | 415/5070 [02:43<30:43, 2.53it/s] 8%|β–Š | 416/5070 [02:43<27:35, 2.81it/s] 8%|β–Š | 417/5070 [02:43<27:18, 2.84it/s] 8%|β–Š | 418/5070 [02:44<28:26, 2.73it/s] 8%|β–Š | 419/5070 [02:44<28:17, 2.74it/s] 8%|β–Š | 420/5070 [02:45<27:58, 2.77it/s] 8%|β–Š | 421/5070 [02:45<26:19, 2.94it/s] 8%|β–Š | 422/5070 [02:45<24:50, 3.12it/s] 8%|β–Š | 423/5070 [02:46<26:30, 2.92it/s] 8%|β–Š | 424/5070 [02:46<26:57, 2.87it/s] 8%|β–Š | 425/5070 [02:46<29:17, 2.64it/s] 8%|β–Š | 426/5070 [02:47<29:36, 2.61it/s] 8%|β–Š | 427/5070 [02:47<30:52, 2.51it/s] 8%|β–Š | 428/5070 [02:48<29:51, 2.59it/s] 8%|β–Š | 429/5070 [02:48<28:39, 2.70it/s] 8%|β–Š | 430/5070 [02:48<28:36, 2.70it/s] 9%|β–Š | 431/5070 [02:49<28:34, 2.71it/s] 9%|β–Š | 432/5070 [02:49<28:04, 2.75it/s] 9%|β–Š | 433/5070 [02:49<27:33, 2.80it/s] 9%|β–Š | 434/5070 [02:50<26:46, 2.89it/s] 9%|β–Š | 435/5070 [02:50<30:11, 2.56it/s] 9%|β–Š | 436/5070 [02:50<27:57, 2.76it/s] 9%|β–Š | 437/5070 [02:51<27:25, 2.82it/s] 9%|β–Š | 438/5070 [02:51<28:27, 2.71it/s] 9%|β–Š | 439/5070 [02:52<29:18, 2.63it/s] 9%|β–Š | 440/5070 [02:52<29:07, 2.65it/s] 9%|β–Š | 441/5070 [02:52<29:23, 2.63it/s] 9%|β–Š | 442/5070 [02:53<28:21, 2.72it/s] 9%|β–Š | 443/5070 [02:53<26:46, 2.88it/s] 9%|β–‰ | 444/5070 [02:53<27:21, 2.82it/s] 9%|β–‰ | 445/5070 [02:54<27:35, 2.79it/s] 9%|β–‰ | 446/5070 [02:54<31:53, 2.42it/s] 9%|β–‰ | 447/5070 [02:55<29:38, 2.60it/s] 9%|β–‰ | 448/5070 [02:55<32:06, 2.40it/s] 9%|β–‰ | 449/5070 [02:55<30:18, 2.54it/s] 9%|β–‰ | 450/5070 [02:56<30:30, 2.52it/s] 9%|β–‰ | 451/5070 [02:56<35:58, 2.14it/s] 9%|β–‰ | 452/5070 [02:57<31:53, 2.41it/s] 9%|β–‰ | 453/5070 [02:57<30:16, 2.54it/s] 9%|β–‰ | 454/5070 [02:58<32:03, 2.40it/s] 9%|β–‰ | 455/5070 [02:58<32:14, 2.39it/s] 9%|β–‰ | 456/5070 [02:58<30:19, 2.54it/s] 9%|β–‰ | 457/5070 [02:59<29:53, 2.57it/s] 9%|β–‰ | 458/5070 [02:59<29:59, 2.56it/s] 9%|β–‰ | 459/5070 [02:59<29:36, 2.60it/s] 9%|β–‰ | 460/5070 [03:00<32:30, 2.36it/s] 9%|β–‰ | 461/5070 [03:00<31:48, 2.42it/s] 9%|β–‰ | 462/5070 [03:01<30:53, 2.49it/s] 9%|β–‰ | 463/5070 [03:01<29:15, 2.62it/s] 9%|β–‰ | 464/5070 [03:01<26:44, 2.87it/s] 9%|β–‰ | 465/5070 [03:02<28:36, 2.68it/s] 9%|β–‰ | 466/5070 [03:02<28:37, 2.68it/s] 9%|β–‰ | 467/5070 [03:02<27:06, 2.83it/s] 9%|β–‰ | 468/5070 [03:03<26:37, 2.88it/s] 9%|β–‰ | 469/5070 [03:03<26:46, 2.86it/s] 9%|β–‰ | 470/5070 [03:03<27:13, 2.82it/s] 9%|β–‰ | 471/5070 [03:04<27:24, 2.80it/s] 9%|β–‰ | 472/5070 [03:04<27:36, 2.78it/s] 9%|β–‰ | 473/5070 [03:05<26:50, 2.86it/s] 9%|β–‰ | 474/5070 [03:05<28:13, 2.71it/s] 9%|β–‰ | 475/5070 [03:05<28:49, 2.66it/s] 9%|β–‰ | 476/5070 [03:06<29:09, 2.63it/s] 9%|β–‰ | 477/5070 [03:06<27:36, 2.77it/s] 9%|β–‰ | 478/5070 [03:07<29:31, 2.59it/s] 9%|β–‰ | 479/5070 [03:07<27:13, 2.81it/s] 9%|β–‰ | 480/5070 [03:07<27:09, 2.82it/s] 9%|β–‰ | 481/5070 [03:07<24:54, 3.07it/s] 10%|β–‰ | 482/5070 [03:08<28:23, 2.69it/s] 10%|β–‰ | 483/5070 [03:08<27:57, 2.73it/s] 10%|β–‰ | 484/5070 [03:08<25:38, 2.98it/s] 10%|β–‰ | 485/5070 [03:09<25:07, 3.04it/s] 10%|β–‰ | 486/5070 [03:09<26:52, 2.84it/s] 10%|β–‰ | 487/5070 [03:10<29:34, 2.58it/s] 10%|β–‰ | 488/5070 [03:10<30:52, 2.47it/s] 10%|β–‰ | 489/5070 [03:10<28:52, 2.64it/s] 10%|β–‰ | 490/5070 [03:11<28:11, 2.71it/s] 10%|β–‰ | 491/5070 [03:11<28:24, 2.69it/s] 10%|β–‰ | 492/5070 [03:12<30:32, 2.50it/s] 10%|β–‰ | 493/5070 [03:12<30:43, 2.48it/s] 10%|β–‰ | 494/5070 [03:12<29:25, 2.59it/s] 10%|β–‰ | 495/5070 [03:13<26:43, 2.85it/s] 10%|β–‰ | 496/5070 [03:13<27:07, 2.81it/s] 10%|β–‰ | 497/5070 [03:13<29:10, 2.61it/s] 10%|β–‰ | 498/5070 [03:14<30:41, 2.48it/s] 10%|β–‰ | 499/5070 [03:14<29:46, 2.56it/s] 10%|β–‰ | 500/5070 [03:15<29:14, 2.60it/s] 10%|β–‰ | 500/5070 [03:15<29:14, 2.60it/s] 10%|β–‰ | 501/5070 [03:15<31:12, 2.44it/s] 10%|β–‰ | 502/5070 [03:16<31:45, 2.40it/s] 10%|β–‰ | 503/5070 [03:16<34:48, 2.19it/s] 10%|β–‰ | 504/5070 [03:17<35:06, 2.17it/s] 10%|β–‰ | 505/5070 [03:17<34:39, 2.20it/s] 10%|β–‰ | 506/5070 [03:17<31:02, 2.45it/s] 10%|β–ˆ | 507/5070 [03:18<27:23, 2.78it/s][INFO|trainer.py:811] 2024-09-09 12:53:28,785 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, tokens, ner_tags. If id, tokens, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-09 12:53:28,787 >>
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-09 12:53:28,787 >> Num examples = 6946
[INFO|trainer.py:3824] 2024-09-09 12:53:28,787 >> Batch size = 8
{'loss': 0.0183, 'grad_norm': 0.16175590455532074, 'learning_rate': 4.5069033530571994e-05, 'epoch': 0.99}
0%| | 0/869 [00:00<?, ?it/s]
1%| | 10/869 [00:00<00:09, 91.31it/s]
2%|▏ | 20/869 [00:00<00:10, 79.28it/s]
3%|β–Ž | 29/869 [00:00<00:10, 77.60it/s]
4%|▍ | 37/869 [00:00<00:11, 74.43it/s]
5%|β–Œ | 46/869 [00:00<00:10, 78.18it/s]
6%|β–‹ | 55/869 [00:00<00:10, 80.86it/s]
7%|β–‹ | 64/869 [00:00<00:10, 77.08it/s]
8%|β–Š | 72/869 [00:00<00:10, 76.17it/s]
9%|β–‰ | 82/869 [00:01<00:09, 80.57it/s]
11%|β–ˆ | 92/869 [00:01<00:09, 83.71it/s]
12%|β–ˆβ– | 102/869 [00:01<00:09, 84.98it/s]
13%|β–ˆβ–Ž | 111/869 [00:01<00:09, 82.02it/s]
14%|β–ˆβ– | 120/869 [00:01<00:09, 80.94it/s]
15%|β–ˆβ– | 129/869 [00:01<00:09, 78.76it/s]
16%|β–ˆβ–Œ | 138/869 [00:01<00:08, 81.75it/s]
17%|β–ˆβ–‹ | 147/869 [00:01<00:09, 77.19it/s]
18%|β–ˆβ–Š | 156/869 [00:01<00:09, 78.39it/s]
19%|β–ˆβ–‰ | 164/869 [00:02<00:08, 78.36it/s]
20%|β–ˆβ–‰ | 172/869 [00:02<00:09, 76.45it/s]
21%|β–ˆβ–ˆ | 180/869 [00:02<00:09, 75.56it/s]
22%|β–ˆβ–ˆβ– | 189/869 [00:02<00:08, 77.85it/s]
23%|β–ˆβ–ˆβ–Ž | 197/869 [00:02<00:08, 74.92it/s]
24%|β–ˆβ–ˆβ–Ž | 206/869 [00:02<00:08, 77.53it/s]
25%|β–ˆβ–ˆβ– | 215/869 [00:02<00:08, 79.20it/s]
26%|β–ˆβ–ˆβ–Œ | 224/869 [00:02<00:08, 80.25it/s]
27%|β–ˆβ–ˆβ–‹ | 233/869 [00:02<00:08, 76.55it/s]
28%|β–ˆβ–ˆβ–Š | 241/869 [00:03<00:08, 71.54it/s]
29%|β–ˆβ–ˆβ–‰ | 250/869 [00:03<00:08, 74.36it/s]
30%|β–ˆβ–ˆβ–‰ | 259/869 [00:03<00:07, 76.53it/s]
31%|β–ˆβ–ˆβ–ˆ | 267/869 [00:03<00:07, 75.31it/s]
32%|β–ˆβ–ˆβ–ˆβ– | 275/869 [00:03<00:07, 74.63it/s]
33%|β–ˆβ–ˆβ–ˆβ–Ž | 283/869 [00:03<00:07, 73.75it/s]
33%|β–ˆβ–ˆβ–ˆβ–Ž | 291/869 [00:03<00:07, 74.15it/s]
34%|β–ˆβ–ˆβ–ˆβ– | 299/869 [00:03<00:07, 71.68it/s]
35%|β–ˆβ–ˆβ–ˆβ–Œ | 307/869 [00:03<00:07, 72.22it/s]
36%|β–ˆβ–ˆβ–ˆβ–Œ | 315/869 [00:04<00:07, 72.79it/s]
37%|β–ˆβ–ˆβ–ˆβ–‹ | 323/869 [00:04<00:07, 72.47it/s]
38%|β–ˆβ–ˆβ–ˆβ–Š | 333/869 [00:04<00:06, 78.26it/s]
39%|β–ˆβ–ˆβ–ˆβ–‰ | 341/869 [00:04<00:06, 77.41it/s]
40%|β–ˆβ–ˆβ–ˆβ–ˆ | 349/869 [00:04<00:07, 71.93it/s]
41%|β–ˆβ–ˆβ–ˆβ–ˆ | 358/869 [00:04<00:06, 74.83it/s]
42%|β–ˆβ–ˆβ–ˆβ–ˆβ– | 367/869 [00:04<00:06, 78.08it/s]
43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 375/869 [00:04<00:06, 74.02it/s]
44%|β–ˆβ–ˆβ–ˆβ–ˆβ– | 383/869 [00:04<00:06, 74.40it/s]
45%|β–ˆβ–ˆβ–ˆβ–ˆβ– | 391/869 [00:05<00:06, 71.69it/s]
46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 399/869 [00:05<00:06, 73.08it/s]
47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 408/869 [00:05<00:06, 76.09it/s]
48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š | 417/869 [00:05<00:05, 78.91it/s]
49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 425/869 [00:05<00:05, 79.05it/s]
50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 434/869 [00:05<00:05, 79.59it/s]
51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 442/869 [00:05<00:05, 76.14it/s]
52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 450/869 [00:05<00:05, 77.00it/s]
53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 459/869 [00:05<00:05, 77.04it/s]
54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 467/869 [00:06<00:05, 76.09it/s]
55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 477/869 [00:06<00:04, 81.01it/s]
56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 486/869 [00:06<00:04, 82.35it/s]
57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 495/869 [00:06<00:04, 76.40it/s]
58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 503/869 [00:06<00:04, 74.27it/s]
59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 511/869 [00:06<00:04, 75.21it/s]
60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 520/869 [00:06<00:04, 78.71it/s]
61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 528/869 [00:06<00:04, 72.74it/s]
62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 536/869 [00:06<00:04, 73.74it/s]
63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 544/869 [00:07<00:04, 70.86it/s]
64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 553/869 [00:07<00:04, 73.98it/s]
65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 561/869 [00:07<00:04, 75.50it/s]
65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 569/869 [00:07<00:04, 73.18it/s]
67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 578/869 [00:07<00:03, 75.98it/s]
67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 586/869 [00:07<00:03, 73.37it/s]
68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 594/869 [00:07<00:03, 74.99it/s]
69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 603/869 [00:07<00:03, 78.26it/s]
70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 611/869 [00:07<00:03, 77.04it/s]
71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 619/869 [00:08<00:03, 77.37it/s]
72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 627/869 [00:08<00:03, 75.86it/s]
73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 635/869 [00:08<00:03, 73.79it/s]
74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 644/869 [00:08<00:02, 77.27it/s]
75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 653/869 [00:08<00:02, 79.43it/s]
76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 661/869 [00:08<00:02, 76.75it/s]
77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 670/869 [00:08<00:02, 79.36it/s]
78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 679/869 [00:08<00:02, 82.14it/s]
79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 688/869 [00:09<00:02, 70.58it/s]
80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 696/869 [00:09<00:02, 72.95it/s]
81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 704/869 [00:09<00:02, 72.45it/s]
82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 713/869 [00:09<00:02, 76.22it/s]
83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 721/869 [00:09<00:01, 76.48it/s]
84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 730/869 [00:09<00:01, 78.48it/s]
85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 738/869 [00:09<00:01, 77.62it/s]
86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 746/869 [00:09<00:01, 78.12it/s]
87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 754/869 [00:09<00:01, 75.65it/s]
88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 763/869 [00:09<00:01, 78.80it/s]
89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 771/869 [00:10<00:01, 73.95it/s]
90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 779/869 [00:10<00:01, 65.06it/s]
91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 788/869 [00:10<00:01, 69.56it/s]
92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 797/869 [00:10<00:00, 73.01it/s]
93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 805/869 [00:10<00:00, 73.73it/s]
94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 814/869 [00:10<00:00, 75.79it/s]
95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 822/869 [00:10<00:00, 75.50it/s]
96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 831/869 [00:10<00:00, 75.78it/s]
97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 840/869 [00:11<00:00, 77.68it/s]
98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 849/869 [00:11<00:00, 79.00it/s]
99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 857/869 [00:11<00:00, 79.09it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 865/869 [00:11<00:00, 73.04it/s]
 10%|β–ˆ | 507/5070 [03:33<27:23, 2.78it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 869/869 [00:15<00:00, 73.04it/s]
[INFO|trainer.py:3503] 2024-09-09 12:53:44,013 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-507
[INFO|configuration_utils.py:472] 2024-09-09 12:53:44,015 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-507/config.json
[INFO|modeling_utils.py:2799] 2024-09-09 12:53:44,902 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-507/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:53:44,903 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-507/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:53:44,903 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-507/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-09 12:53:48,529 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-09 12:53:48,529 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
10%|β–ˆ | 508/5070 [03:38<7:59:31, 6.31s/it] 10%|β–ˆ | 509/5070 [03:38<5:43:00, 4.51s/it] 10%|β–ˆ | 510/5070 [03:39<4:09:49, 3.29s/it] 10%|β–ˆ | 511/5070 [03:39<3:02:23, 2.40s/it] 10%|β–ˆ | 512/5070 [03:39<2:14:43, 1.77s/it] 10%|β–ˆ | 513/5070 [03:40<1:43:58, 1.37s/it] 10%|β–ˆ | 514/5070 [03:40<1:22:41, 1.09s/it] 10%|β–ˆ | 515/5070 [03:40<1:04:22, 1.18it/s] 10%|β–ˆ | 516/5070 [03:41<52:24, 1.45it/s] 10%|β–ˆ | 517/5070 [03:41<48:49, 1.55it/s] 10%|β–ˆ | 518/5070 [03:42<46:44, 1.62it/s] 10%|β–ˆ | 519/5070 [03:42<39:54, 1.90it/s] 10%|β–ˆ | 520/5070 [03:42<34:40, 2.19it/s] 10%|β–ˆ | 521/5070 [03:43<32:48, 2.31it/s] 10%|β–ˆ | 522/5070 [03:43<31:00, 2.44it/s] 10%|β–ˆ | 523/5070 [03:43<27:25, 2.76it/s] 10%|β–ˆ | 524/5070 [03:44<26:38, 2.84it/s] 10%|β–ˆ | 525/5070 [03:44<27:04, 2.80it/s] 10%|β–ˆ | 526/5070 [03:44<27:18, 2.77it/s] 10%|β–ˆ | 527/5070 [03:45<27:06, 2.79it/s] 10%|β–ˆ | 528/5070 [03:45<27:34, 2.75it/s] 10%|β–ˆ | 529/5070 [03:45<25:33, 2.96it/s] 10%|β–ˆ | 530/5070 [03:46<27:32, 2.75it/s] 10%|β–ˆ | 531/5070 [03:46<28:24, 2.66it/s] 10%|β–ˆ | 532/5070 [03:47<26:56, 2.81it/s] 11%|β–ˆ | 533/5070 [03:47<26:50, 2.82it/s] 11%|β–ˆ | 534/5070 [03:47<25:43, 2.94it/s] 11%|β–ˆ | 535/5070 [03:48<27:07, 2.79it/s] 11%|β–ˆ | 536/5070 [03:48<27:33, 2.74it/s] 11%|β–ˆ | 537/5070 [03:48<29:37, 2.55it/s] 11%|β–ˆ | 538/5070 [03:49<32:00, 2.36it/s] 11%|β–ˆ | 539/5070 [03:49<29:10, 2.59it/s] 11%|β–ˆ | 540/5070 [03:50<28:23, 2.66it/s] 11%|β–ˆ | 541/5070 [03:50<28:24, 2.66it/s] 11%|β–ˆ | 542/5070 [03:50<29:45, 2.54it/s] 11%|β–ˆ | 543/5070 [03:51<32:20, 2.33it/s] 11%|β–ˆ | 544/5070 [03:51<32:47, 2.30it/s] 11%|β–ˆ | 545/5070 [03:52<32:17, 2.34it/s] 11%|β–ˆ | 546/5070 [03:52<29:43, 2.54it/s] 11%|β–ˆ | 547/5070 [03:52<29:53, 2.52it/s] 11%|β–ˆ | 548/5070 [03:53<28:05, 2.68it/s] 11%|β–ˆ | 549/5070 [03:53<27:40, 2.72it/s] 11%|β–ˆ | 550/5070 [03:53<25:17, 2.98it/s] 11%|β–ˆ | 551/5070 [03:54<26:11, 2.87it/s] 11%|β–ˆ | 552/5070 [03:54<26:47, 2.81it/s] 11%|β–ˆ | 553/5070 [03:55<27:54, 2.70it/s] 11%|β–ˆ | 554/5070 [03:55<31:30, 2.39it/s] 11%|β–ˆ | 555/5070 [03:55<31:08, 2.42it/s] 11%|β–ˆ | 556/5070 [03:56<28:54, 2.60it/s] 11%|β–ˆ | 557/5070 [03:56<28:31, 2.64it/s] 11%|β–ˆ | 558/5070 [03:56<27:29, 2.74it/s] 11%|β–ˆ | 559/5070 [03:57<30:01, 2.50it/s] 11%|β–ˆ | 560/5070 [03:57<28:51, 2.60it/s] 11%|β–ˆ | 561/5070 [03:58<27:48, 2.70it/s] 11%|β–ˆ | 562/5070 [03:58<27:04, 2.78it/s] 11%|β–ˆ | 563/5070 [03:58<28:37, 2.62it/s] 11%|β–ˆ | 564/5070 [03:59<32:25, 2.32it/s] 11%|β–ˆ | 565/5070 [03:59<32:00, 2.35it/s] 11%|β–ˆ | 566/5070 [04:00<32:54, 2.28it/s] 11%|β–ˆ | 567/5070 [04:00<32:14, 2.33it/s] 11%|β–ˆ | 568/5070 [04:01<31:07, 2.41it/s] 11%|β–ˆ | 569/5070 [04:01<30:28, 2.46it/s] 11%|β–ˆ | 570/5070 [04:01<28:51, 2.60it/s] 11%|β–ˆβ– | 571/5070 [04:02<27:02, 2.77it/s] 11%|β–ˆβ– | 572/5070 [04:02<27:49, 2.69it/s] 11%|β–ˆβ– | 573/5070 [04:03<29:30, 2.54it/s] 11%|β–ˆβ– | 574/5070 [04:03<29:06, 2.57it/s] 11%|β–ˆβ– | 575/5070 [04:03<27:59, 2.68it/s] 11%|β–ˆβ– | 576/5070 [04:04<27:40, 2.71it/s] 11%|β–ˆβ– | 577/5070 [04:04<26:59, 2.78it/s] 11%|β–ˆβ– | 578/5070 [04:04<27:13, 2.75it/s] 11%|β–ˆβ– | 579/5070 [04:05<27:11, 2.75it/s] 11%|β–ˆβ– | 580/5070 [04:05<27:55, 2.68it/s] 11%|β–ˆβ– | 581/5070 [04:05<27:12, 2.75it/s] 11%|β–ˆβ– | 582/5070 [04:06<25:46, 2.90it/s] 11%|β–ˆβ– | 583/5070 [04:06<26:23, 2.83it/s] 12%|β–ˆβ– | 584/5070 [04:06<26:58, 2.77it/s] 12%|β–ˆβ– | 585/5070 [04:07<28:33, 2.62it/s] 12%|β–ˆβ– | 586/5070 [04:07<28:31, 2.62it/s] 12%|β–ˆβ– | 587/5070 [04:08<26:37, 2.81it/s] 12%|β–ˆβ– | 588/5070 [04:08<26:51, 2.78it/s] 12%|β–ˆβ– | 589/5070 [04:08<28:01, 2.66it/s] 12%|β–ˆβ– | 590/5070 [04:09<31:48, 2.35it/s] 12%|β–ˆβ– | 591/5070 [04:09<28:30, 2.62it/s] 12%|β–ˆβ– | 592/5070 [04:10<29:37, 2.52it/s] 12%|β–ˆβ– | 593/5070 [04:10<28:26, 2.62it/s] 12%|β–ˆβ– | 594/5070 [04:10<28:30, 2.62it/s] 12%|β–ˆβ– | 595/5070 [04:11<26:28, 2.82it/s] 12%|β–ˆβ– | 596/5070 [04:11<24:56, 2.99it/s] 12%|β–ˆβ– | 597/5070 [04:11<26:43, 2.79it/s] 12%|β–ˆβ– | 598/5070 [04:12<26:47, 2.78it/s] 12%|β–ˆβ– | 599/5070 [04:12<28:46, 2.59it/s] 12%|β–ˆβ– | 600/5070 [04:12<28:04, 2.65it/s] 12%|β–ˆβ– | 601/5070 [04:13<27:50, 2.68it/s] 12%|β–ˆβ– | 602/5070 [04:13<28:36, 2.60it/s] 12%|β–ˆβ– | 603/5070 [04:14<31:30, 2.36it/s] 12%|β–ˆβ– | 604/5070 [04:14<30:04, 2.48it/s] 12%|β–ˆβ– | 605/5070 [04:15<29:27, 2.53it/s] 12%|β–ˆβ– | 606/5070 [04:15<27:32, 2.70it/s] 12%|β–ˆβ– | 607/5070 [04:15<26:02, 2.86it/s] 12%|β–ˆβ– | 608/5070 [04:15<24:33, 3.03it/s] 12%|β–ˆβ– | 609/5070 [04:16<27:46, 2.68it/s] 12%|β–ˆβ– | 610/5070 [04:16<27:02, 2.75it/s] 12%|β–ˆβ– | 611/5070 [04:17<27:23, 2.71it/s] 12%|β–ˆβ– | 612/5070 [04:17<26:46, 2.78it/s] 12%|β–ˆβ– | 613/5070 [04:17<27:05, 2.74it/s] 12%|β–ˆβ– | 614/5070 [04:18<27:24, 2.71it/s] 12%|β–ˆβ– | 615/5070 [04:18<27:54, 2.66it/s] 12%|β–ˆβ– | 616/5070 [04:18<28:24, 2.61it/s] 12%|β–ˆβ– | 617/5070 [04:19<27:37, 2.69it/s] 12%|β–ˆβ– | 618/5070 [04:19<27:37, 2.69it/s] 12%|β–ˆβ– | 619/5070 [04:20<27:19, 2.71it/s] 12%|β–ˆβ– | 620/5070 [04:20<32:19, 2.29it/s] 12%|β–ˆβ– | 621/5070 [04:21<33:26, 2.22it/s]