--- library_name: transformers license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-dmae-humeda-DAV56 results: [] --- # swinv2-tiny-patch4-window8-256-dmae-humeda-DAV56 This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8748 - Accuracy: 0.7308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 45 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.8421 | 4 | 1.5618 | 0.3269 | | No log | 1.8421 | 8 | 1.5396 | 0.4423 | | 1.7209 | 2.8421 | 12 | 1.5124 | 0.3077 | | 1.7209 | 3.8421 | 16 | 1.4679 | 0.3269 | | 1.7209 | 4.8421 | 20 | 1.4130 | 0.3462 | | 1.5864 | 5.8421 | 24 | 1.3107 | 0.5385 | | 1.5864 | 6.8421 | 28 | 1.2112 | 0.5385 | | 1.5864 | 7.8421 | 32 | 1.1194 | 0.5962 | | 1.2629 | 8.8421 | 36 | 1.0422 | 0.5962 | | 1.2629 | 9.8421 | 40 | 0.9706 | 0.6538 | | 1.2629 | 10.8421 | 44 | 0.9638 | 0.6538 | | 0.951 | 11.8421 | 48 | 0.9906 | 0.6154 | | 0.951 | 12.8421 | 52 | 0.9890 | 0.5962 | | 0.951 | 13.8421 | 56 | 0.9110 | 0.6538 | | 0.7947 | 14.8421 | 60 | 0.9282 | 0.6731 | | 0.7947 | 15.8421 | 64 | 0.9315 | 0.6538 | | 0.7947 | 16.8421 | 68 | 0.9230 | 0.6154 | | 0.7143 | 17.8421 | 72 | 0.9068 | 0.6538 | | 0.7143 | 18.8421 | 76 | 0.8997 | 0.6154 | | 0.7143 | 19.8421 | 80 | 0.8648 | 0.6923 | | 0.6329 | 20.8421 | 84 | 0.8624 | 0.6538 | | 0.6329 | 21.8421 | 88 | 0.8737 | 0.6154 | | 0.6329 | 22.8421 | 92 | 0.8636 | 0.6731 | | 0.5508 | 23.8421 | 96 | 0.8545 | 0.6538 | | 0.5508 | 24.8421 | 100 | 0.8617 | 0.6731 | | 0.5508 | 25.8421 | 104 | 0.8635 | 0.6346 | | 0.5009 | 26.8421 | 108 | 0.8650 | 0.6346 | | 0.5009 | 27.8421 | 112 | 0.8638 | 0.6538 | | 0.5009 | 28.8421 | 116 | 0.8730 | 0.6538 | | 0.5286 | 29.8421 | 120 | 0.8886 | 0.6346 | | 0.5286 | 30.8421 | 124 | 0.8827 | 0.6538 | | 0.5286 | 31.8421 | 128 | 0.8748 | 0.7308 | | 0.4559 | 32.8421 | 132 | 0.8671 | 0.7115 | | 0.4559 | 33.8421 | 136 | 0.8727 | 0.6731 | | 0.4559 | 34.8421 | 140 | 0.8755 | 0.7115 | | 0.4704 | 35.8421 | 144 | 0.8760 | 0.7308 | | 0.4704 | 36.8421 | 148 | 0.8786 | 0.7308 | | 0.4704 | 37.8421 | 152 | 0.8781 | 0.7308 | | 0.4582 | 38.8421 | 156 | 0.8771 | 0.7308 | | 0.4582 | 39.8421 | 160 | 0.8754 | 0.7308 | | 0.4582 | 40.8421 | 164 | 0.8741 | 0.7308 | | 0.4538 | 41.8421 | 168 | 0.8742 | 0.7308 | | 0.4538 | 42.8421 | 172 | 0.8740 | 0.7308 | | 0.4538 | 43.8421 | 176 | 0.8740 | 0.7308 | | 0.4476 | 44.8421 | 180 | 0.8741 | 0.7308 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0