--- library_name: transformers license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-dmae-humeda-DAV53 results: [] --- # swinv2-tiny-patch4-window8-256-dmae-humeda-DAV53 This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8283 - Accuracy: 0.7045 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.6493 | 0.0909 | | No log | 2.0 | 12 | 1.5699 | 0.3864 | | No log | 3.0 | 18 | 1.4384 | 0.4205 | | No log | 4.0 | 24 | 1.2748 | 0.4091 | | No log | 5.0 | 30 | 1.2428 | 0.5114 | | No log | 6.0 | 36 | 1.0682 | 0.6023 | | No log | 7.0 | 42 | 1.2919 | 0.5 | | No log | 8.0 | 48 | 0.9125 | 0.6591 | | No log | 9.0 | 54 | 1.0308 | 0.5568 | | No log | 10.0 | 60 | 0.8505 | 0.6705 | | No log | 11.0 | 66 | 0.9354 | 0.625 | | No log | 12.0 | 72 | 0.8283 | 0.7045 | | No log | 13.0 | 78 | 0.8508 | 0.6705 | | No log | 14.0 | 84 | 0.8072 | 0.6477 | | No log | 15.0 | 90 | 0.8574 | 0.6477 | | No log | 16.0 | 96 | 0.8278 | 0.625 | | 0.7213 | 17.0 | 102 | 0.8671 | 0.6364 | | 0.7213 | 18.0 | 108 | 0.8787 | 0.6364 | | 0.7213 | 19.0 | 114 | 0.8215 | 0.6818 | | 0.7213 | 20.0 | 120 | 0.8018 | 0.6932 | | 0.7213 | 21.0 | 126 | 0.8278 | 0.6477 | | 0.7213 | 22.0 | 132 | 0.8424 | 0.6364 | | 0.7213 | 23.0 | 138 | 0.8392 | 0.625 | | 0.7213 | 24.0 | 144 | 0.8371 | 0.625 | | 0.7213 | 25.0 | 150 | 0.8373 | 0.625 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0