--- library_name: transformers license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-dmae-humeda-DAV41 results: [] --- # swinv2-tiny-patch4-window8-256-dmae-humeda-DAV41 This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9385 - Accuracy: 0.6818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2 | 1.4874 | 0.4318 | | No log | 2.0 | 4 | 1.3560 | 0.4432 | | No log | 3.0 | 6 | 1.3117 | 0.4432 | | No log | 4.0 | 8 | 1.2763 | 0.4432 | | No log | 5.0 | 10 | 1.2602 | 0.5682 | | 8.9996 | 6.0 | 12 | 1.2348 | 0.6023 | | 8.9996 | 7.0 | 14 | 1.1982 | 0.5795 | | 8.9996 | 8.0 | 16 | 1.1592 | 0.6136 | | 8.9996 | 9.0 | 18 | 1.1142 | 0.625 | | 8.9996 | 10.0 | 20 | 1.0682 | 0.6364 | | 8.9996 | 11.0 | 22 | 1.0256 | 0.6477 | | 7.429 | 12.0 | 24 | 0.9843 | 0.6705 | | 7.429 | 13.0 | 26 | 0.9602 | 0.6705 | | 7.429 | 14.0 | 28 | 0.9452 | 0.6591 | | 7.429 | 15.0 | 30 | 0.9385 | 0.6818 | | 7.429 | 16.0 | 32 | 0.9320 | 0.6705 | | 7.429 | 17.0 | 34 | 0.9285 | 0.6477 | | 6.2752 | 18.0 | 36 | 0.9239 | 0.6591 | | 6.2752 | 19.0 | 38 | 0.9214 | 0.6818 | | 6.2752 | 20.0 | 40 | 0.9206 | 0.6818 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0