--- library_name: transformers license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-dmae-humeda-DAV40 results: [] --- # swinv2-tiny-patch4-window8-256-dmae-humeda-DAV40 This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7428 - Accuracy: 0.7614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 4 | 1.5349 | 0.3409 | | No log | 2.0 | 8 | 1.3213 | 0.4432 | | 4.7629 | 3.0 | 12 | 1.2541 | 0.4432 | | 4.7629 | 4.0 | 16 | 1.2072 | 0.6023 | | 4.7629 | 5.0 | 20 | 1.1313 | 0.6364 | | 3.7987 | 6.0 | 24 | 1.0712 | 0.6477 | | 3.7987 | 7.0 | 28 | 0.9677 | 0.6591 | | 3.7987 | 8.0 | 32 | 0.8655 | 0.7159 | | 3.0437 | 9.0 | 36 | 0.8564 | 0.6818 | | 3.0437 | 10.0 | 40 | 0.8003 | 0.6818 | | 3.0437 | 11.0 | 44 | 0.7987 | 0.7386 | | 2.4867 | 12.0 | 48 | 0.7619 | 0.7159 | | 2.4867 | 13.0 | 52 | 0.7426 | 0.7386 | | 2.4867 | 14.0 | 56 | 0.7492 | 0.6932 | | 2.147 | 15.0 | 60 | 0.7827 | 0.7159 | | 2.147 | 16.0 | 64 | 0.7509 | 0.7045 | | 2.147 | 17.0 | 68 | 0.7364 | 0.7386 | | 1.8443 | 18.0 | 72 | 0.7705 | 0.7159 | | 1.8443 | 19.0 | 76 | 0.7515 | 0.7273 | | 1.8443 | 20.0 | 80 | 0.7470 | 0.7386 | | 1.659 | 21.0 | 84 | 0.7495 | 0.75 | | 1.659 | 22.0 | 88 | 0.7237 | 0.75 | | 1.659 | 23.0 | 92 | 0.7440 | 0.75 | | 1.5303 | 24.0 | 96 | 0.7367 | 0.75 | | 1.5303 | 25.0 | 100 | 0.7428 | 0.7614 | | 1.5303 | 26.0 | 104 | 0.7407 | 0.75 | | 1.4305 | 27.0 | 108 | 0.7406 | 0.75 | | 1.4305 | 28.0 | 112 | 0.7423 | 0.75 | | 1.4305 | 29.0 | 116 | 0.7427 | 0.75 | | 1.3529 | 30.0 | 120 | 0.7428 | 0.75 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0