File size: 54,174 Bytes
6481b89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
# Code-Dokumentation

## Einführung

Dieses Dokument beschreibt den Code zur Verarbeitung und Simulation von Daten aus einer CSV-Datei, die in einem neuronalen Netzwerk verwendet werden. Der Code umfasst Funktionen zur Initialisierung des Netzwerks, zur Verarbeitung der CSV-Datei, zur Simulation des Lernprozesses und zur Speicherung und Laden des Modells.

## Abhängigkeiten

- `pandas`: Zur Verarbeitung von CSV-Dateien.
- `numpy`: Für numerische Operationen.
- `random`: Für zufällige Operationen.
- `tqdm`: Für Fortschrittsanzeigen.
- `tkinter`: Für die grafische Benutzeroberfläche.
- `seaborn`: Für die Visualisierung.
- `networkx`: Für die Erstellung und Analyse von Graphen.
- `json`: Für die Speicherung und das Laden von Modellen.
- `os`: Für Dateioperationen.
- `time`: Für Zeitmessungen.
- `torch`: Für neuronale Netzwerke.
- `threading`: Für die Verwaltung von Threads.
- `logging`: Für die Protokollierung.
- `sqlite3`: Für die Verwendung von SQLite-Datenbanken.
- `dask.dataframe`: Für die parallele Verarbeitung von Daten.

## Konfiguration des Loggers

```python
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
```

## Globale Variablen

- `initialized`: Überprüft, ob das Netzwerk initialisiert wurde.
- `category_nodes`: Liste der Knoten im Netzwerk.
- `questions`: Liste der Fragen.
- `model_saved`: Schutzvariable, um zu überprüfen, ob das Modell gespeichert wurde.

## Überprüfen, ob der Ordner existiert

```python
output_dir = "plots"
if not os.path.exists(output_dir):
    os.makedirs(output_dir)
```

## Funktionen

### Funktion zum Aufteilen der CSV-Datei

```python
def split_csv(filename, chunk_size=1000, output_dir="data"):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    chunk_iter = pd.read_csv(filename, chunksize=chunk_size)
    for i, chunk in enumerate(chunk_iter):
        chunk.to_csv(os.path.join(output_dir, f"data_part_{i}.csv"), index=False)
        logging.info(f"Chunk {i} mit {len(chunk)} Zeilen gespeichert.")
```

### Verbesserung 1: Verstärkung der Verbindungen bei häufig gestellten Fragen

```python
def strengthen_question_connection(category_nodes, question, category):
    category_node = next((node for node in category_nodes if node.label == category), None)
    if category_node:
        for conn in category_node.connections:
            if conn.target_node.label == question:
                old_weight = conn.weight
                conn.weight += 0.1  # Verstärkung der Verbindung
                conn.weight = np.clip(conn.weight, 0, 1.0)
                logging.info(f"Verstärkte Verbindung für Frage '{question}' in Kategorie '{category}': {old_weight:.4f} -> {conn.weight:.4f}")
```

### Verbesserung 2: Erweiterte Hebb'sche Lernregel zur besseren Zuordnung von Fragen

```python
def enhanced_hebbian_learning(node, target_node, learning_rate=0.2, decay_factor=0.01):
    old_weight = None
    for conn in node.connections:
        if conn.target_node == target_node:
            old_weight = conn.weight
            conn.weight += learning_rate * node.activation * target_node.activation
            conn.weight = np.clip(conn.weight - decay_factor * conn.weight, 0, 1.0)
            break

    if old_weight is not None:
        logging.info(f"Hebb'sches Lernen angewendet: Gewicht {old_weight:.4f} -> {conn.weight:.4f}")
```

### Verbesserung 3: Simulation der Frageverarbeitung im Netzwerk

```python
def simulate_question_answering(category_nodes, question, questions):
    category = next((q['category'] for q in questions if q['question'] == question), None)
    if not category:
        logging.warning(f"Frage '{question}' nicht gefunden!")
        return None

    category_node = next((node for node in category_nodes if node.label == category), None)
    if category_node:
        propagate_signal(category_node, input_signal=0.9, emotion_weights={}, emotional_state=1.0)
        activation = category_node.activation
        if activation is None or activation <= 0:
            logging.warning(f"Kategorie '{category}' hat eine ungültige Aktivierung: {activation}")
            return 0.0  # Rückgabe von 0, falls die Aktivierung fehlschlägt
        logging.info(f"Verarbeite Frage: '{question}' → Kategorie: '{category}' mit Aktivierung {activation:.4f}")
        return activation  # Entfernte doppelte Logging-Ausgabe
    else:
        logging.warning(f"Kategorie '{category}' nicht im Netzwerk gefunden. Die Kategorie wird neu hinzugefügt!")
        return 0.0
```

### Verbesserung 4: Finden der besten passenden Frage zur Benutzeranfrage

```python
def find_question_by_keyword(questions, keyword):
    matching_questions = [q for q in questions if keyword.lower() in q['question'].lower()]
    return matching_questions if matching_questions else None
```

### Verbesserung 5: Suche nach der ähnlichsten Frage basierend auf einfachen Ähnlichkeitsmetriken

```python
def find_similar_question(questions, query):
    from difflib import get_close_matches
    question_texts = [q['question'] for q in questions]
    closest_matches = get_close_matches(query, question_texts, n=1, cutoff=0.6)

    if closest_matches:
        matched_question = next((q for q in questions if q['question'] == closest_matches[0]), None)
        return matched_question
    else:
        return {"question": "Keine passende Frage gefunden", "category": "Unbekannt"}
```

### Verbesserung 6: Testfunktion zur Überprüfung des Modells

```python
def test_model(category_nodes, questions, query):
    matched_question = find_question_by_keyword(questions, query)
    if matched_question:
        logging.info(f"Gefundene Frage: {matched_question[0]['question']} -> Kategorie: {matched_question[0]['category']}")
        simulate_question_answering(category_nodes, matched_question[0]['question'], questions)
    else:
        logging.warning("Keine passende Frage gefunden.")

    similarity_question = find_similar_question(questions, query)
    logging.info(f"Ähnlichste Frage: {similarity_question['question']} -> Kategorie: {similarity_question['category']}")
```

### NetworkX-Funktionen für kausale Graphen

```python
def build_causal_graph(category_nodes):
    G = nx.DiGraph()
    for node in category_nodes:
        G.add_node(node.label)
        for conn in node.connections:
            G.add_edge(node.label, conn.target_node.label, weight=conn.weight)
    return G

def analyze_causality_multiple(G, num_pairs=3):
    if len(G.nodes) < 2:
        logging.warning("Graph enthält nicht genügend Knoten für eine Analyse.")
        return

    for _ in range(num_pairs):
        start_node, target_node = random.sample(G.nodes, 2)
        logging.info(f"Analysiere kausale Pfade von '{start_node}' nach '{target_node}'")

        try:
            paths = list(nx.all_simple_paths(G, source=start_node, target=target_node))
            if paths:
                for path in paths:
                    logging.info(f"Kausaler Pfad: {' -> '.join(path)}")
            else:
                logging.info(f"Kein Pfad gefunden von '{start_node}' nach '{target_node}'")
        except nx.NetworkXNoPath:
            logging.warning(f"Kein direkter Pfad zwischen '{start_node}' und '{target_node}' gefunden.")

def analyze_node_influence(G):
    influence_scores = nx.pagerank(G, alpha=0.85)
    sorted_influences = sorted(influence_scores.items(), key=lambda x: x[1], reverse=True)
    for node, score in sorted_influences:
        logging.info(f"Knoten: {node}, Einfluss: {score:.4f}")
```

### Funktion für Interventionen basierend auf Pearl's Do-Operator

```python
def do_intervention(node, new_value):
    logging.info(f"Intervention: Setze {node.label} auf {new_value}")
    node.activation = new_value
    for conn in node.connections:
        conn.target_node.activation += node.activation * conn.weight
```

### Kontextabhängiges Lernen verstärken

```python
def contextual_causal_analysis(node, context_factors, learning_rate=0.1):
    context_factor = context_factors.get(node.label, 1.0)
    if node.activation > 0.8 and context_factor > 1.0:
        logging.info(f"Kausale Beziehung verstärkt für {node.label} aufgrund des Kontextes.")
        for conn in node.connections:
            conn.weight += learning_rate * context_factor
            conn.weight = np.clip(conn.weight, 0, 1.0)
            logging.info(f"Gewicht aktualisiert: {node.label} → {conn.target_node.label}, Gewicht: {conn.weight:.4f}")
```

### PyTorch-Modell für kausale Inferenz

```python
class CausalInferenceNN(nn.Module):
    def __init__(self):
        super(CausalInferenceNN, self).__init__()
        self.fc1 = nn.Linear(10, 20)
        self.fc2 = nn.Linear(20, 1)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        return self.fc2(x)
```

### Debugging-Funktion

```python
def debug_connections(category_nodes):
    start_time = time.time()
    for node in category_nodes:
        logging.info(f"Knoten: {node.label}")
        for conn in node.connections:
            logging.info(f" Verbindung zu: {conn.target_node.label}, Gewicht: {conn.weight}")
    end_time = time.time()
    logging.info(f"debug_connections Ausführungszeit: {end_time - start_time:.4f} Sekunden")
```

### Hilfsfunktionen

```python
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

def add_activation_noise(activation, noise_level=0.1):
    noise = np.random.normal(0, noise_level)
    return np.clip(activation + noise, 0.0, 1.0)

def decay_weights(category_nodes, decay_rate=0.002, forgetting_curve=0.95):
    for node in category_nodes:
        for conn in node.connections:
            conn.weight *= (1 - decay_rate) * forgetting_curve

def reward_connections(category_nodes, target_category, reward_factor=0.1):
    for node in category_nodes:
        if node.label == target_category:
            for conn in node.connections:
                conn.weight += reward_factor
                conn.weight = np.clip(conn.weight, 0, 1.0)

def apply_emotion_weight(activation, category_label, emotion_weights, emotional_state=1.0):
    emotion_factor = emotion_weights.get(category_label, 1.0) * emotional_state
    return activation * emotion_factor

def generate_simulated_answers(data, personality_distributions):
    simulated_answers = []
    for _, row in data.iterrows():
        category = row['Kategorie']
        mean = personality_distributions.get(category, 0.5)
        simulated_answer = np.clip(np.random.normal(mean, 0.2), 0.0, 1.0)
        simulated_answers.append(simulated_answer)
    return simulated_answers

def social_influence(category_nodes, social_network, influence_factor=0.1):
    for node in category_nodes:
        for conn in node.connections:
            social_impact = sum([social_network.get(conn.target_node.label, 0)]) * influence_factor
            conn.weight += social_impact
            conn.weight = np.clip(conn.weight, 0, 1.0)

def update_emotional_state(emotional_state, emotional_change_rate=0.02):
    emotional_state += np.random.normal(0, emotional_change_rate)
    return np.clip(emotional_state, 0.7, 1.5)

def apply_contextual_factors(activation, node, context_factors):
    context_factor = context_factors.get(node.label, 1.0)
    return activation * context_factor * random.uniform(0.9, 1.1)

def long_term_memory(category_nodes, long_term_factor=0.01):
    for node in category_nodes:
        for conn in node.connections:
            conn.weight += long_term_factor * conn.weight
            conn.weight = np.clip(conn.weight, 0, 1.0)

def hebbian_learning(node, learning_rate=0.3, weight_limit=1.0, reg_factor=0.005):
    for connection in node.connections:
        old_weight = connection.weight
        connection.weight += learning_rate * node.activation * connection.target_node.activation
        connection.weight = np.clip(connection.weight, -weight_limit, weight_limit)
        connection.weight -= reg_factor * connection.weight
        node.activation_history.append(node.activation)  # Aktivierung speichern
        connection.target_node.activation_history.append(connection.target_node.activation)
        logging.info(f"Hebb'sches Lernen: Gewicht von {old_weight:.4f} auf {connection.weight:.4f} erhöht")
```

### Klassen für Netzwerkstruktur

```python
class Connection:
    def __init__(self, target_node, weight=None):
        self.target_node = target_node
        self.weight = weight if weight is not None else random.uniform(0.1, 1.0)

class Node:
    def __init__(self, label):
        self.label = label
        self.connections = []
        self.activation = 0.0
        self.activation_history = []

    def add_connection(self, target_node, weight=None):
        self.connections.append(Connection(target_node, weight))

    def save_state(self):
        return {
            "label": self.label,
            "activation": self.activation,
            "activation_history": self.activation_history,
            "connections": [{"target": conn.target_node.label, "weight": conn.weight} for conn in self.connections]
        }

    @staticmethod
    def load_state(state, nodes_dict):
        node = Node(state["label"])
        node.activation = state["activation"]
        node.activation_history = state["activation_history"]
        for conn_state in state["connections"]:
            target_node = nodes_dict[conn_state["target"]]
            connection = Connection(target_node, conn_state["weight"])
            node.connections.append(connection)
        return node

class MemoryNode(Node):
    def __init__(self, label, memory_type="short_term"):
        super().__init__(label)
        self.memory_type = memory_type
        self.retention_time = {"short_term": 5, "mid_term": 20, "long_term": 100}[memory_type]
        self.time_in_memory = 0

    def decay(self, decay_rate, context_factors, emotional_state):
        context_factor = context_factors.get(self.label, 1.0)
        emotional_factor = emotional_state
        for conn in self.connections:
            if self.memory_type == "short_term":
                conn.weight *= (1 - decay_rate * 2 * context_factor * emotional_factor)
            elif self.memory_type == "mid_term":
                conn.weight *= (1 - decay_rate * context_factor * emotional_factor)
            elif self.memory_type == "long_term":
                conn.weight *= (1 - decay_rate * 0.5 * context_factor * emotional_factor)

    def promote(self, activation_threshold=0.7):
        if len(self.activation_history) == 0:
            return
        if self.memory_type == "short_term" and np.mean(self.activation_history[-5:]) > activation_threshold:
            self.memory_type = "mid_term"
            self.retention_time = 20
        elif self.memory_type == "mid_term" and np.mean(self.activation_history[-20:]) > activation_threshold:
            self.memory_type = "long_term"
            self.retention_time = 100

class CortexCreativus(Node):
    def __init__(self, label):
        super().__init__(label)

    def generate_new_ideas(self, category_nodes):
        new_ideas = []
        for node in category_nodes:
            if node.activation > 0.5:
                new_idea = f"New idea based on {node.label} with activation {node.activation}"
                new_ideas.append(new_idea)
        return new_ideas

class SimulatrixNeuralis(Node):
    def __init__(self, label):
        super().__init__(label)

    def simulate_scenarios(self, category_nodes):
        scenarios = []
        for node in category_nodes:
            if node.activation > 0.5:
                scenario = f"Simulated scenario based on {node.label} with activation {node.activation}"
                scenarios.append(scenario)
        return scenarios

class CortexCriticus(Node):
    def __init__(self, label):
        super().__init__(label)

    def evaluate_ideas(self, ideas):
        evaluated_ideas = []
        for idea in ideas:
            evaluation_score = random.uniform(0, 1)
            evaluation = f"Evaluated idea: {idea} - Score: {evaluation_score}"
            evaluated_ideas.append(evaluation)
        return evaluated_ideas

class LimbusAffectus(Node):
    def __init__(self, label):
        super().__init__(label)

    def apply_emotion_weight(self, ideas, emotional_state):
        weighted_ideas = []
        for idea in ideas:
            weighted_idea = f"Emotionally weighted idea: {idea} - Weight: {emotional_state}"
            weighted_ideas.append(weighted_idea)
        return weighted_ideas

class MetaCognitio(Node):
    def __init__(self, label):
        super().__init__(label)

    def optimize_system(self, category_nodes):
        for node in category_nodes:
            node.activation *= random.uniform(0.9, 1.1)

class CortexSocialis(Node):
    def __init__(self, label):
        super().__init__(label)

    def simulate_social_interactions(self, category_nodes):
        interactions = []
        for node in category_nodes:
            if node.activation > 0.5:
                interaction = f"Simulated social interaction based on {node.label} with activation {node.activation}"
                interactions.append(interaction)
        return interactions

def connect_new_brains_to_network(category_nodes, new_brains):
    for brain in new_brains:
        for node in category_nodes:
            brain.add_connection(node)
            node.add_connection(brain)
```

### Netzwerk-Initialisierung

```python
def initialize_quiz_network(categories):
    try:
        category_nodes = [Node(c) for c in categories]
        for node in category_nodes:
            for target_node in category_nodes:
                if node != target_node:
                    node.add_connection(target_node)
                    logging.debug(f"Verbindung hinzugefügt: {node.label} → {target_node.label}")
        debug_connections(category_nodes)
        for node in category_nodes:
            logging.info(f"Knoten erstellt: {node.label}")
            for conn in node.connections:
                logging.info(f"  → Verbindung zu {conn.target_node.label} mit Gewicht {conn.weight:.4f}")
        return category_nodes
    except Exception as e:
        logging.error(f"Fehler bei der Netzwerk-Initialisierung: {e}")
        return []
```

### Signalpropagation

```python
def propagate_signal(node, input_signal, emotion_weights, emotional_state=1.0, context_factors=None):
    node.activation = add_activation_noise(sigmoid(input_signal * random.uniform(0.8, 1.2)))
    node.activation_history.append(node.activation)  # Aktivierung speichern
    node.activation = apply_emotion_weight(node.activation, node.label, emotion_weights, emotional_state)
    if context_factors:
        node.activation = apply_contextual_factors(node.activation, node, context_factors)
    logging.info(f"Signalpropagation für {node.label}: Eingangssignal {input_signal:.4f}")
    for connection in node.connections:
        logging.info(f"  → Signal an {connection.target_node.label} mit Gewicht {connection.weight:.4f}")
        connection.target_node.activation += node.activation * connection.weight

def propagate_signal_with_memory(node, input_signal, category_nodes, memory_nodes, context_factors, emotional_state):
    node.activation = add_activation_noise(sigmoid(input_signal))
    node.activation_history.append(node.activation)
    for connection in node.connections:
        connection.target_node.activation += node.activation * connection.weight
    for memory_node in memory_nodes:
        memory_node.time_in_memory += 1
        memory_node.promote()
```

### Simulation mit Anpassungen

```python
def simulate_learning(data, category_nodes, personality_distributions, epochs=1, learning_rate=0.8, reward_interval=5, decay_rate=0.002, emotional_state=1.0, context_factors=None):
    if context_factors is None:
        context_factors = {}

    weights_history = {f"{node.label} → {conn.target_node.label}": [] for node in category_nodes for conn in node.connections}
    activation_history = {node.label: [] for node in category_nodes}
    question_nodes = []

    for idx, row in data.iterrows():
        q_node = Node(row['Frage'])
        question_nodes.append(q_node)
        category_label = row['Kategorie'].strip()
        category_node = next((c for c in category_nodes if c.label == category_label), None)
        if category_node:
            q_node.add_connection(category_node)
            logging.debug(f"Verbindung hinzugefügt: {q_node.label} → {category_node.label}")
        else:
            logging.warning(f"Warnung: Kategorie '{category_label}' nicht gefunden für Frage '{row['Frage']}'.")

    emotion_weights = {category: 1.0 for category in data['Kategorie'].unique()}
    social_network = {category: random.uniform(0.1, 1.0) for category in data['Kategorie'].unique()}

    for epoch in range(epochs):
        logging.info(f"\n--- Epoche {epoch + 1} ---")
        simulated_answers = generate_simulated_answers(data, personality_distributions)

        for node in category_nodes:
            node.activation_sum = 0.0
            node.activation_count = 0

        for node in category_nodes:
            propagate_signal(node, random.uniform(0.1, 0.9), emotion_weights, emotional_state, context_factors)
            node.activation_history.append(node.activation)  # Aktivierung speichern

        for idx, q_node in enumerate(question_nodes):
            for node in category_nodes + question_nodes:
                node.activation = 0.0
            answer = simulated_answers[idx]
            propagate_signal(q_node, answer, emotion_weights, emotional_state, context_factors)
            q_node.activation_history.append(q_node.activation)  # Aktivierung speichern
            hebbian_learning(q_node, learning_rate)

            for node in category_nodes:
                node.activation_sum += node.activation
                if node.activation > 0:
                    node.activation_count += 1

            for node in category_nodes:
                for conn in node.connections:
                    weights_history[f"{node.label} → {conn.target_node.label}"].append(conn.weight)
                    logging.debug(f"Gewicht aktualisiert: {node.label} → {conn.target_node.label}, Gewicht: {conn.weight}")

            # Kausalitätsverstärkung anwenden
            contextual_causal_analysis(q_node, context_factors, learning_rate)

        for node in category_nodes:
            if node.activation_count > 0:
                mean_activation = node.activation_sum / node.activation_count
                activation_history[node.label].append(mean_activation)
                logging.info(f"Durchschnittliche Aktivierung für Knoten {node.label}: {mean_activation:.4f}")
            else:
                activation_history[node.label].append(0.0)
                logging.info(f"Knoten {node.label} wurde in dieser Epoche nicht aktiviert.")

        if (epoch + 1) % reward_interval == 0:
            target_category = random.choice(data['Kategorie'].unique())
            reward_connections(category_nodes, target_category=target_category)

        decay_weights(category_nodes, decay_rate=decay_rate)
        social_influence(category_nodes, social_network)

    logging.info("Simulation abgeschlossen. Ergebnisse werden analysiert...")
    return activation_history, weights_history
```

### Simulation mit mehrstufigem Gedächtnis

```python
def simulate_multilevel_memory(data, category_nodes, personality_distributions, epochs=1):
    short_term_memory = [MemoryNode(c, "short_term") for c in category_nodes]
    mid_term_memory = []
    long_term_memory = []
    memory_nodes = short_term_memory + mid_term_memory + long_term_memory
    context_factors = {question: random.uniform(0.9, 1.1) for question in data['Frage'].unique()}
    emotional_state = 1.0
    for epoch in range(epochs):
        logging.info(f"\n--- Epoche {epoch + 1} ---")
        for node in short_term_memory:
            input_signal = random.uniform(0.1, 1.0)
            propagate_signal_with_memory(node, input_signal, category_nodes, memory_nodes, context_factors, emotional_state)
        for memory_node in memory_nodes:
            memory_node.decay(decay_rate=0.01, context_factors=context_factors, emotional_state=emotional_state)
        for memory_node in memory_nodes:
            memory_node.promote()
        short_term_memory, mid_term_memory, long_term_memory = update_memory_stages(memory_nodes)
        logging.info(f"Epoche {epoch + 1}: Kurzzeit {len(short_term_memory)}, Mittelzeit {len(mid_term_memory)}, Langzeit {len(long_term_memory)}")
    return short_term_memory, mid_term_memory, long_term_memory

def update_memory_stages(memory_nodes):
    short_term_memory = [node for node in memory_nodes if node.memory_type == "short_term"]
    mid_term_memory = [node for node in memory_nodes if node.memory_type == "mid_term"]
    long_term_memory = [node for node in memory_nodes if node.memory_type == "long_term"]
    return short_term_memory, mid_term_memory, long_term_memory
```

### Plot-Funktionen

```python
def plot_activation_history(activation_history, filename="activation_history.png"):
    if not activation_history:
        logging.warning("No activation history to plot")
        return
    plt.figure(figsize=(12, 8))
    for label, activations in activation_history.items():
        if len(activations) > 0:
            plt.plot(range(1, len(activations) + 1), activations, label=label)
    plt.title("Entwicklung der Aktivierungen während des Lernens")
    plt.xlabel("Epoche")
    plt.ylabel("Aktivierung")
    plt.legend()
    plt.grid(True)
    plt.savefig(os.path.join(output_dir, filename), dpi=300, bbox_inches="tight")
    plt.close()
    logging.info(f"Plot gespeichert unter: {os.path.join(output_dir, filename)}")

def plot_dynamics(activation_history, weights_history, filename="dynamics.png"):
    if not weights_history:
        logging.error("weights_history ist leer.")
        return

    plt.figure(figsize=(16, 12))
    plt.subplot(2, 2, 1)
    for label, activations in activation_history.items():
        if len(activations) > 0:
            plt.plot(range(1, len(activations) + 1), activations, label=label)
    plt.title("Entwicklung der Aktivierungen während des Lernens")
    plt.xlabel("Epoche")
    plt.ylabel("Aktivierung")
    plt.legend()
    plt.grid(True)

    plt.subplot(2, 2, 2)
    for label, weights in weights_history.items():
        if len(weights) > 0:
            plt.plot(range(1, len(weights) + 1), weights, label=label, alpha=0.7)
    plt.title("Entwicklung der Verbindungsgewichte während des Lernens")
    plt.xlabel("Epoche")
    plt.ylabel("Gewicht")
    plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
    plt.grid(True)

    plt.savefig(os.path.join(output_dir, filename), dpi=300, bbox_inches="tight")
    plt.close()
    logging.info(f"Plot gespeichert unter: {os.path.join(output_dir, filename)}")

def plot_memory_distribution(short_term_memory, mid_term_memory, long_term_memory, filename="memory_distribution.png"):
    counts = [len(short_term_memory), len(mid_term_memory), len(long_term_memory)]
    labels = ["Kurzfristig", "Mittelfristig", "Langfristig"]
    plt.figure(figsize=(8, 6))
    plt.bar(labels, counts, color=["red", "blue", "green"])
    plt.title("Verteilung der Gedächtnisknoten")
    plt.ylabel("Anzahl der Knoten")
    plt.savefig(os.path.join(output_dir, filename), dpi=300, bbox_inches="tight")
    plt.close()
    logging.info(f"Plot gespeichert unter: {os.path.join(output_dir, filename)}")

def plot_activation_heatmap(activation_history, filename="activation_heatmap.png"):
    if not activation_history:
        logging.warning("No activation history to plot")
        return

    min_length = min(len(activations) for activations in activation_history.values())
    truncated_activations = {key: values[:min_length] for key, values in activation_history.items()}

    plt.figure(figsize=(12, 8))
    heatmap_data = np.array([activations for activations in truncated_activations.values()])

    if heatmap_data.size == 0:
        logging.error("Heatmap-Daten sind leer. Überprüfen Sie die Aktivierungshistorie.")
        return

    sns.heatmap(heatmap_data, cmap="YlGnBu", xticklabels=truncated_activations.keys(), yticklabels=False)
    plt.title("Heatmap der Aktivierungswerte")
    plt.xlabel("Kategorie")
    plt.ylabel("Epoche")
    plt.savefig(os.path.join(output_dir, filename), dpi=300, bbox_inches="tight")
    plt.close()
    logging.info(f"Plot gespeichert unter: {os.path.join(output_dir, filename)}")

def plot_network_topology(category_nodes, new_brains, filename="network_topology.png"):
    G = nx.DiGraph()
    for node in category_nodes:
        G.add_node(node.label)
        for conn in node.connections:
            G.add_edge(node.label, conn.target_node.label, weight=conn.weight)
    for brain in new_brains:
        G.add_node(brain.label, color='red')
        for conn in brain.connections:
            G.add_edge(brain.label, conn.target_node.label, weight=conn.weight)

    pos = nx.spring_layout(G)
    edge_labels = {(u, v): d['weight'] for u, v, d in G.edges(data=True)}
    node_colors = [G.nodes[node].get('color', 'skyblue') for node in G.nodes()]

    nx.draw(G, pos, with_labels=True, node_size=3000, node_color=node_colors, font_size=10, font_weight="bold", edge_color="gray")
    nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)
    plt.title("Netzwerktopologie")
    plt.savefig(os.path.join(output_dir, filename), dpi=300, bbox_inches="tight")
    plt.close()
    logging.info(f"Plot gespeichert unter: {os.path.join(output_dir, filename)}")
```

### Modell speichern und laden

```python
def save_model(category_nodes, filename="model.json"):
    model_data = {
        "nodes": [node.save_state() for node in category_nodes]
    }
    with open(filename, "w") as file:
        json.dump(model_data, file, indent=4)
    logging.info(f"Modell gespeichert in {filename}")

def save_model_with_questions_and_answers(category_nodes, questions, filename="model_with_qa.json"):
    global model_saved
    logging.info("Starte Speichern des Modells...")

    # Überprüfen, ob Änderungen vorgenommen wurden
    current_model_data = {
        "nodes": [node.save_state() for node in category_nodes],
        "questions": questions
    }

    if os.path.exists(filename):
        try:
            with open(filename, "r", encoding="utf-8") as file:
                existing_model_data = json.load(file)
                if existing_model_data == current_model_data:
                    logging.info("Keine Änderungen erkannt, erneutes Speichern übersprungen.")
                    return
        except Exception as e:
            logging.warning(f"Fehler beim Überprüfen des vorhandenen Modells: {e}")

    # Speichern des aktualisierten Modells
    try:
        with open(filename, "w", encoding="utf-8") as file:
            json.dump(current_model_data, file, indent=4)
        logging.info(f"Modell erfolgreich gespeichert unter {filename}.")
        model_saved = True  # Setze auf True nach erfolgreichem Speichern
    except Exception as e:
        logging.error(f"Fehler beim Speichern des Modells: {e}")

def load_model_with_questions_and_answers(filename="model_with_qa.json"):
    global initialized
    if initialized:
        logging.info("Modell bereits initialisiert.")
        return None, None

    if not os.path.exists(filename):
        logging.warning(f"Datei {filename} nicht gefunden. Netzwerk wird initialisiert.")
        return None, None

    try:
        with open(filename, "r", encoding="utf-8") as file:
            model_data = json.load(file)

        nodes_dict = {node_data["label"]: Node(node_data["label"]) for node_data in model_data["nodes"]}

        for node_data in model_data["nodes"]:
            node = nodes_dict[node_data["label"]]
            node.activation = node_data.get("activation", 0.0)
            for conn_state in node_data["connections"]:
                target_node = nodes_dict.get(conn_state["target"])
                if target_node:
                    node.add_connection(target_node, conn_state["weight"])

        questions = model_data.get("questions", [])
        logging.info(f"Modell geladen mit {len(nodes_dict)} Knoten und {len(questions)} Fragen")
        initialized = True
        return list(nodes_dict.values()), questions

    except json.JSONDecodeError as e:
        logging.error(f"Fehler beim Parsen der JSON-Datei: {e}")
        return None, None
```

### Fragen aktualisieren

```python
def update_questions_with_answers(filename="model_with_qa.json"):
    with open(filename, "r") as file:
        model_data = json.load(file)

    for question in model_data["questions"]:
        if "answer" not in question:
            question["answer"] = input(f"Gib die Antwort für: '{question['question']}': ")

    with open(filename, "w") as file:
        json.dump(model_data, file, indent=4)
    logging.info(f"Fragen wurden mit Antworten aktualisiert und gespeichert in {filename}")
```

### Beste Antwort finden

```python
def find_best_answer(category_nodes, questions, query):
    matched_question = find_similar_question(questions, query)
    if matched_question:
        logging.info(f"Gefundene Frage: {matched_question['question']} -> Kategorie: {matched_question['category']}")
        answer = matched_question.get("answer", "Keine Antwort verfügbar")
        logging.info(f"Antwort: {answer}")
        return answer
    else:
        logging.warning("Keine passende Frage gefunden.")
        return None
```

### Dashboard erstellen

```python
def create_dashboard(category_nodes, activation_history, short_term_memory, mid_term_memory, long_term_memory):
    root = tk.Tk()
    root.title("Psyco Dashboard")

    # Anzeige der Aktivierungshistorie
    activation_frame = ttk.Frame(root, padding="10")
    activation_frame.pack(fill=tk.BOTH, expand=True)
    activation_label = ttk.Label(activation_frame, text="Aktivierungshistorie")
    activation_label.pack()
    if activation_history:
        for label, activations in activation_history.items():
            fig, ax = plt.subplots()
            ax.plot(range(1, len(activations) + 1), activations)
            ax.set_title(label)
            canvas = FigureCanvasTkAgg(fig, master=activation_frame)
            canvas.draw()
            canvas.get_tk_widget().pack()
    else:
        no_data_label = ttk.Label(activation_frame, text="Keine Aktivierungshistorie verfügbar.")
        no_data_label.pack()

    # Anzeige der Gedächtnisverteilung
    memory_frame = ttk.Frame(root, padding="10")
    memory_frame.pack(fill=tk.BOTH, expand=True)
    memory_label = ttk.Label(memory_frame, text="Gedächtnisverteilung")
    memory_label.pack()
    memory_counts = [len(short_term_memory), len(mid_term_memory), len(long_term_memory)]
    labels = ["Kurzfristig", "Mittelfristig", "Langfristig"]
    fig, ax = plt.subplots()
    ax.bar(labels, memory_counts, color=["red", "blue", "green"])
    ax.set_title("Verteilung der Gedächtnisknoten")
    ax.set_ylabel("Anzahl der Knoten")
    canvas = FigureCanvasTkAgg(fig, master=memory_frame)
    canvas.draw()
    canvas.get_tk_widget().pack()

    # Anzeige der Netzwerktopologie
    topology_frame = ttk.Frame(root, padding="10")
    topology_frame.pack(fill=tk.BOTH, expand=True)
    topology_label = ttk.Label(topology_frame, text="Netzwerktopologie")
    topology_label.pack()
    G = nx.DiGraph()
    for node in category_nodes:
        G.add_node(node.label)
        for conn in node.connections:
            G.add_edge(node.label, conn.target_node.label, weight=conn.weight)
    pos = nx.spring_layout(G)
    edge_labels = {(u, v): d['weight'] for u, v, d in G.edges(data=True)}
    node_colors = ['skyblue' for _ in G.nodes()]
    fig, ax = plt.subplots()
    nx.draw(G, pos, with_labels=True, node_size=3000, node_color=node_colors, font_size=10, font_weight="bold", edge_color="gray", ax=ax)
    nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, ax=ax)
    ax.set_title("Netzwerktopologie")
    canvas = FigureCanvasTkAgg(fig, master=topology_frame)
    canvas.draw()
    canvas.get_tk_widget().pack()

    # Anzeige der Heatmap der Aktivierungswerte
    heatmap_frame = ttk.Frame(root, padding="10")
    heatmap_frame.pack(fill=tk.BOTH, expand=True)
    heatmap_label = ttk.Label(heatmap_frame, text="Heatmap der Aktivierungswerte")
    heatmap_label.pack()
    if activation_history:
        min_length = min(len(activations) for activations in activation_history.values())
        truncated_activations = {key: values[:min_length] for key, values in activation_history.items()}
        heatmap_data = np.array([activations for activations in truncated_activations.values()])
        if heatmap_data.size > 0:
            fig, ax = plt.subplots()
            sns.heatmap(heatmap_data, cmap="YlGnBu", xticklabels=truncated_activations.keys(), yticklabels=False, ax=ax)
            ax.set_title("Heatmap der Aktivierungswerte")
            ax.set_xlabel("Kategorie")
            ax.set_ylabel("Epoche")
            canvas = FigureCanvasTkAgg(fig, master=heatmap_frame)
            canvas.draw()
            canvas.get_tk_widget().pack()
        else:
            no_data_label = ttk.Label(heatmap_frame, text="Heatmap-Daten sind leer. Überprüfen Sie die Aktivierungshistorie.")
            no_data_label.pack()
    else:
        no_data_label = ttk.Label(heatmap_frame, text="Keine Aktivierungshistorie verfügbar.")
        no_data_label.pack()

    root.mainloop()
```

### CSV-Datei verarbeiten

```python
def process_csv_in_chunks(filename, chunk_size=10000):
    global category_nodes, questions
    logging.info(f"Beginne Verarbeitung der Datei: {filename}")

    try:
        # Test, ob die Datei existiert
        if not os.path.exists(filename):
            logging.error(f"Datei {filename} nicht gefunden.")
            return None

        all_chunks = []
        for chunk in pd.read_csv(filename, chunksize=chunk_size, encoding="utf-8", on_bad_lines='skip'):
            logging.info(f"Chunk mit {len(chunk)} Zeilen gelesen.")
            if 'Frage' not in chunk.columns or 'Kategorie' not in chunk.columns or 'Antwort' not in chunk.columns:
                logging.error("CSV-Datei enthält nicht die erwarteten Spalten: 'Frage', 'Kategorie', 'Antwort'")
                return None

            all_chunks.append(chunk)

        data = pd.concat(all_chunks, ignore_index=True)
        logging.info(f"Alle Chunks erfolgreich verarbeitet. Gesamtzeilen: {len(data)}")

        return data

    except pd.errors.EmptyDataError:
        logging.error("CSV-Datei ist leer.")
    except pd.errors.ParserError as e:
        logging.error(f"Parsing-Fehler in CSV-Datei: {e}")
    except Exception as e:
        logging.error(f"Unerwarteter Fehler beim Verarbeiten der Datei: {e}")

    return None
```

### Einzelne Einträge verarbeiten

```python
def process_single_entry(question, category, answer):
    global category_nodes, questions

    # Sicherstellen, dass die globalen Variablen initialisiert sind
    if category_nodes is None:
        category_nodes = []
        logging.warning("Kategorie-Knotenliste war None, wurde nun initialisiert.")

    if questions is None:
        questions = []
        logging.warning("Fragenliste war None, wurde nun initialisiert.")

    # Überprüfen, ob die Kategorie bereits vorhanden ist
    if not any(node.label == category for node in category_nodes):
        category_nodes.append(Node(category))
        logging.info(f"Neue Kategorie '{category}' dem Netzwerk hinzugefügt.")

    # Frage, Kategorie und Antwort zur Liste hinzufügen
    questions.append({"question": question, "category": category, "answer": answer})
    logging.info(f"Neue Frage hinzugefügt: '{question}' -> Kategorie: '{category}'")
```

### CSV-Datei mit Dask verarbeiten

```python
def process_csv_with_dask(filename, chunk_size=10000):
    try:
        ddf = dd.read_csv(filename, blocksize=chunk_size)
        ddf = ddf.astype({'Kategorie': 'category'})

        for row in ddf.itertuples(index=False, name=None):
            process_single_entry(row[0], row[1], row[2])

        logging.info("Alle Chunks erfolgreich mit Dask verarbeitet.")
    except Exception as e:
        logging.error(f"Fehler beim Verarbeiten der Datei mit Dask: {e}")
```

### In SQLite speichern

```python
def save_to_sqlite(filename, db_name="dataset.db"):
    conn = sqlite3.connect(db_name)
    chunk_iter = pd.read_csv(filename, chunksize=10000)
    for chunk in chunk_iter:
        chunk.to_sql("qa_data", conn, if_exists="append", index=False)
        logging.info(f"Chunk mit {len(chunk)} Zeilen gespeichert.")
    conn.close()
    logging.info("CSV-Daten wurden erfolgreich in SQLite gespeichert.")
```

### Aus SQLite laden

```python
def load_from_sqlite(db_name="dataset.db"):
    conn = sqlite3.connect(db_name)
    query = "SELECT Frage, Kategorie, Antwort FROM qa_data"
    data = pd.read_sql_query(query, conn)
    conn.close()
    return data
```

### Teilmodell speichern

```python
def save_partial_model(filename="partial_model.json"):
    model_data = {
        "nodes": [node.save_state() for node in category_nodes],
        "questions": questions
    }
    with open(filename, "w") as file:
        json.dump(model_data, file, indent=4)
    logging.info("Teilmodell gespeichert.")
```

### CSV-Datei faul laden

```python
def lazy_load_csv(filename, chunk_size=10000):
    for chunk in pd.read_csv(filename, chunksize=chunk_size):
        for _, row in chunk.iterrows():
            yield row['Frage'], row['Kategorie'], row['Antwort']
```

### Hauptfunktion

```python
def main():
    start_time = time.time()
    category_nodes, questions = load_model_with_questions_and_answers("model_with_qa.json")

    if category_nodes is None:
        csv_file = "data.csv"
        data = process_csv_in_chunks(csv_file)
        if data is None:
            logging.error("Fehler beim Laden der CSV-Datei.")
            return

        if len(data) > 1000:
            logging.info("Datei hat mehr als 1000 Zeilen. Aufteilen in kleinere Dateien...")
            split_csv(csv_file)

            # Verarbeite jede aufgeteilte Datei
            data_dir = "data"
            for filename in os.listdir(data_dir):
                if filename.endswith(".csv"):
                    file_path = os.path.join(data_dir, filename)
                    logging.info(f"Verarbeite Datei: {file_path}")

                    data = process_csv_in_chunks(file_path)
                    if data is None:
                        logging.error("Fehler beim Laden der CSV-Datei.")
                        return

                    categories = data['Kategorie'].unique()
                    category_nodes = initialize_quiz_network(categories)
                    questions = [{"question": row['Frage'], "category": row['Kategorie'], "answer": row['Antwort']} for _, row in data.iterrows()]

                    personality_distributions = {category: random.uniform(0.5, 0.8) for category in [node.label for node in category_nodes]}
                    activation_history, weights_history = simulate_learning(data, category_nodes, personality_distributions)

                    save_model_with_questions_and_answers(category_nodes, questions)
        else:
            logging.info("Datei hat weniger als 1000 Zeilen. Keine Aufteilung erforderlich.")
            categories = data['Kategorie'].unique()
            category_nodes = initialize_quiz_network(categories)
            questions = [{"question": row['Frage'], "category": row['Kategorie'], "answer": row['Antwort']} for _, row in data.iterrows()]

            personality_distributions = {category: random.uniform(0.5, 0.8) for category in [node.label for node in category_nodes]}
            activation_history, weights_history = simulate_learning(data, category_nodes, personality_distributions)

            save_model_with_questions_and_answers(category_nodes, questions)

    end_time = time.time()
    logging.info(f"Simulation abgeschlossen. Gesamtdauer: {end_time - start_time:.2f} Sekunden")
```

### Simulation aus der GUI starten

```python
def run_simulation_from_gui(learning_rate, decay_rate, reward_interval, epochs):
    global model_saved
    model_saved = False  # Erzwinge das Speichern nach dem Training

    start_time = time.time()
    csv_file = "data.csv"

    category_nodes, questions = load_model_with_questions_and_answers("model_with_qa.json")

    if category_nodes is None:
        data = process_csv_in_chunks(csv_file)
        if not isinstance(data, pd.DataFrame):
            logging.error("Fehler beim Laden der CSV-Datei. Erwarteter DataFrame wurde nicht zurückgegeben.")
            return

        if len(data) > 1000:
            logging.info("Datei hat mehr als 1000 Zeilen. Aufteilen in kleinere Dateien...")
            split_csv(csv_file)

            # Verarbeite jede aufgeteilte Datei
            data_dir = "data"
            for filename in os.listdir(data_dir):
                if filename.endswith(".csv"):
                    file_path = os.path.join(data_dir, filename)
                    logging.info(f"Verarbeite Datei: {file_path}")

                    data = process_csv_in_chunks(file_path)
                    if not isinstance(data, pd.DataFrame):
                        logging.error("Fehler beim Laden der CSV-Datei. Erwarteter DataFrame wurde nicht zurückgegeben.")
                        return

                    categories = data['Kategorie'].unique()
                    category_nodes = initialize_quiz_network(categories)
                    questions = [{"question": row['Frage'], "category": row['Kategorie'], "answer": row['Antwort']} for _, row in data.iterrows()]

                    personality_distributions = {category: random.uniform(0.5, 0.8) for category in [node.label for node in category_nodes]}
                    activation_history, weights_history = simulate_learning(
                        data, category_nodes, personality_distributions,
                        epochs=int(epochs),
                        learning_rate=float(learning_rate),
                        reward_interval=int(reward_interval),
                        decay_rate=float(decay_rate)
                    )

                    save_model_with_questions_and_answers(category_nodes, questions)
        else:
            logging.info("Datei hat weniger als 1000 Zeilen. Keine Aufteilung erforderlich.")
            categories = data['Kategorie'].unique()
            category_nodes = initialize_quiz_network(categories)
            questions = [{"question": row['Frage'], "category": row['Kategorie'], "answer": row['Antwort']} for _, row in data.iterrows()]

            personality_distributions = {category: random.uniform(0.5, 0.8) for category in [node.label for node in category_nodes]}
            activation_history, weights_history = simulate_learning(
                data, category_nodes, personality_distributions,
                epochs=int(epochs),
                learning_rate=float(learning_rate),
                reward_interval=int(reward_interval),
                decay_rate=float(decay_rate)
            )

            save_model_with_questions_and_answers(category_nodes, questions)
    else:
        data = process_csv_in_chunks(csv_file)
        if not isinstance(data, pd.DataFrame):
            logging.error("Fehler beim Laden der CSV-Datei. Erwarteter DataFrame wurde nicht zurückgegeben.")
            return

        logging.info(f"Anzahl der Zeilen in der geladenen CSV: {len(data)}")

        personality_distributions = {category: random.uniform(0.5, 0.8) for category in [node.label for node in category_nodes]}

        activation_history, weights_history = simulate_learning(
            data, category_nodes, personality_distributions,
            epochs=int(epochs),
            learning_rate=float(learning_rate),
            reward_interval=int(reward_interval),
            decay_rate=float(decay_rate)
        )

        save_model_with_questions_and_answers(category_nodes, questions)

    end_time = time.time()
    logging.info(f"Simulation abgeschlossen. Gesamtdauer: {end_time - start_time:.2f} Sekunden")
    messagebox.showinfo("Ergebnis", f"Simulation abgeschlossen! Dauer: {end_time - start_time:.2f} Sekunden")
```

### Netzwerk asynchron initialisieren

```python
def async_initialize_network():
    global category_nodes, questions, model_saved
    logging.info("Starte Initialisierung des Netzwerks...")

    category_nodes, questions = load_model_with_questions_and_answers("model_with_qa.json")

    if category_nodes is None:
        category_nodes = []
        logging.warning("Keine gespeicherten Kategorien gefunden. Neues Netzwerk wird erstellt.")
        model_saved = False  # Zurücksetzen der Speicher-Flagge

    if questions is None:
        questions = []
        logging.warning("Keine gespeicherten Fragen gefunden. Neues Fragen-Array wird erstellt.")
        model_saved = False  # Zurücksetzen der Speicher-Flagge

    if not category_nodes:
        csv_file = "data.csv"
        data = process_csv_in_chunks(csv_file)
        if isinstance(data, pd.DataFrame):
            if len(data) > 1000:
                logging.info("Datei hat mehr als 1000 Zeilen. Aufteilen in kleinere Dateien...")
                split_csv(csv_file)

                # Verarbeite jede aufgeteilte Datei
                data_dir = "data"
                for filename in os.listdir(data_dir):
                    if filename.endswith(".csv"):
                        file_path = os.path.join(data_dir, filename)
                        logging.info(f"Verarbeite Datei: {file_path}")

                        data = process_csv_in_chunks(file_path)
                        if isinstance(data, pd.DataFrame):
                            categories = data['Kategorie'].unique()
                            category_nodes = initialize_quiz_network(categories)
                            questions = [{"question": row['Frage'], "category": row['Kategorie'], "answer": row['Antwort']} for _, row in data.iterrows()]
                            logging.info("Netzwerk aus CSV-Daten erfolgreich erstellt.")
                            model_saved = False  # Zurücksetzen der Speicher-Flagge
            else:
                logging.info("Datei hat weniger als 1000 Zeilen. Keine Aufteilung erforderlich.")
                categories = data['Kategorie'].unique()
                category_nodes = initialize_quiz_network(categories)
                questions = [{"question": row['Frage'], "category": row['Kategorie'], "answer": row['Antwort']} for _, row in data.iterrows()]
                logging.info("Netzwerk aus CSV-Daten erfolgreich erstellt.")
                model_saved = False  # Zurücksetzen der Speicher-Flagge
        else:
            logging.error("Fehler beim Laden der CSV-Daten. Netzwerk konnte nicht initialisiert werden.")
            return

    save_model_with_questions_and_answers(category_nodes, questions)
    logging.info("Netzwerk erfolgreich initialisiert.")
```

### GUI starten

```python
def start_gui():
    def start_simulation():
        try:
            threading.Thread(target=run_simulation_from_gui, args=(0.8, 0.002, 5, 10), daemon=True).start()
            messagebox.showinfo("Info", "Simulation gestartet!")
            logging.info("Simulation gestartet")
        except Exception as e:
            logging.error(f"Fehler beim Start der Simulation: {e}")
            messagebox.showerror("Fehler", f"Fehler: {e}")

    root = tk.Tk()
    root.title("DRLCogNet GUI")
    root.geometry("400x300")

    header_label = tk.Label(root, text="Simulationseinstellungen", font=("Helvetica", 16))
    header_label.pack(pady=10)

    start_button = tk.Button(root, text="Simulation starten", command=start_simulation)
    start_button.pack(pady=20)

    root.mainloop()
```

### Hauptprogramm

```python
if __name__ == "__main__":
    # Starte die Initialisierung in einem Thread
    threading.Thread(target=async_initialize_network, daemon=True).start()
    start_gui()
```

## Fragen zur Datenbank (SQLite)

### Wird die Datenbank im Arbeitsspeicher erstellt?

Ja, die SQLite-Datenbank wird im Arbeitsspeicher erstellt, wenn die Funktion `save_to_sqlite` aufgerufen wird. Diese Funktion erstellt eine SQLite-Datenbankdatei (standardmäßig `dataset.db`), die im Arbeitsspeicher gespeichert wird, wenn Sie sie nicht an einem anderen Ort speichern.

### Wie wird die Datenbank erstellt?

Die Datenbank wird erstellt, indem eine Verbindung zur SQLite-Datenbank hergestellt wird. Wenn die Datei `dataset.db` nicht existiert, wird sie erstellt. Anschließend werden die Daten aus der CSV-Datei in Chunks gelesen und in die Tabelle `qa_data` der SQLite-Datenbank gespeichert.

### Wie werden die Daten in die Datenbank geladen?

Die Daten werden in Chunks aus der CSV-Datei gelesen und in die Tabelle `qa_data` der SQLite-Datenbank gespeichert. Die Funktion `to_sql` von Pandas wird verwendet, um die Daten in die Datenbank zu schreiben.

### Wie werden die Daten aus der Datenbank geladen?

Die Daten werden aus der Datenbank geladen, indem eine Verbindung zur SQLite-Datenbank hergestellt und eine SQL-Abfrage ausgeführt wird, um die Daten aus der Tabelle `qa_data` zu lesen. Die Funktion `read_sql_query` von Pandas wird verwendet, um die Daten in einen Pandas-DataFrame zu laden.

### Beispielcode zur Verwendung der Datenbank

```python
# Daten in die Datenbank speichern
save_to_sqlite("data.csv")

# Daten aus der Datenbank laden
data = load_from_sqlite()
```

## Fazit

Diese Dokumentation bietet eine umfassende Übersicht über den Code und die Verwendung der SQLite-Datenbank zur Speicherung und zum Laden von Daten. Der Code ist modular aufgebaut und ermöglicht die Verarbeitung und Simulation von Daten aus einer CSV-Datei in einem neuronalen Netzwerk. Die SQLite-Datenbank wird im Arbeitsspeicher erstellt und ermöglicht die effiziente Speicherung und das Laden von Daten.